Câu hỏi:
28/12/2019 569Cho hình lăng trụ đứng ABC.A'B'C' có AA' = AB =AC =1 và Gọi I là trung điểm cạnh CC' Côsin góc giữa hai mặt phẳng (ABC) và (AB'I) bằng
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).
Quảng cáo
Trả lời:
Chọn A
ta chứng minh được
Ta có
Đã bán 211
Đã bán 244
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB =a, AC = a . Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).
Câu 2:
Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB =2a và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính thể tích V của khối chóp S.ABC
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a. Cạnh bên SA vuông góc với đáy và SA =a Góc giữa hai mặt phẳng (SBC) và (SAD) bằng
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng . Gọi M là trung điểm của cạnh AB. Tính khoảng cách d từ B đến mặt phẳng (SMC).
Câu 5:
Cho hình hộp ABCD.A'B'C'D' có thể tích bằng 12 Tính thể tích của tứ diện AB'CD'
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với đáy (ABCD). Gọi là góc giữa SD và mặt phẳng (ABCD). Mệnh đề nào sau đây đúng?
Câu 7:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại đỉnh B với AC =2a, BC =a. Đỉnh S cách đều các điểm A, B, C. Biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng Khoảng cách từ trung điểm M của SC đến mặt phẳng (SAB) bằng
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận