Câu hỏi:

28/12/2019 1,437

Cho một đa giác đều 20 đỉnh nội tiếp trong đường tròn O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 160k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có số cách chọn 4 đỉnh:  

Hình hai mươi cạnh đều có 10 đường chéo đi qua tâm và chúng đều bằng nhau

Cứ hai đường chéo gộp lại ta được hai đường chéo của một hình chữ nhật

Vậy có tất cả   hình chữ nhật thỏa mãn 4 đỉnh là 4 trong 20 đỉnh của hình cho

Kết luận: 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một người gọi điện thoại cho bạn, quên mất 2 số cuối cùng nhưng lại nhớ là 2 số đó khác nhau.Tìm xác suất để gọi 1 lần là số đúng

Xem đáp án » 28/12/2019 41,043

Câu 2:

Một tổ có 9 học sinh nam và 3 học sinh nữ. Chia tổ thành 3 nhóm 4 người. Tính xác suất để khi chia ngẫu nhiên được nhóm nào cũng có nữ

Xem đáp án » 29/12/2019 21,834

Câu 3:

Trong các số từ 100 đến 999 có bao nhiêu số mà các chữ số của nó tăng dần hoặc giảm dần?

Xem đáp án » 28/12/2019 11,036

Câu 4:

Có bao nhiêu đường chéo của một hình thập giác lồi

Xem đáp án » 29/12/2019 9,169

Câu 5:

Có bao nhiêu số có bốn chữ số có dạng sao cho 

Xem đáp án » 28/12/2019 8,448

Câu 6:

Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 5 chữ số khác nhau mà số đó nhất thiết có mặt các chữ số 1, 2, 5?

Xem đáp án » 28/12/2019 6,744

Câu 7:

Trong mặt phẳng tọa độ Oxy. Ở các góc phần tư thứ I, thứ II, thứ III, thứ IV ta lần lượt lấy 1, 2, 3 và 4 điểm phân biệt (các điểm không nằm trên các trục tọa độ và ba điểm bất kì không thẳng hàng). Ta lấy 3 điểm bất kì trong 10 điểm trên. Tính xác suất để 3 điểm đó tạo thành tam giác có 2 cạnh đều cắt trục tọa độ.

Xem đáp án » 28/12/2019 6,735

Bình luận


Bình luận
Đăng ký thi VIP

VIP 1 - Luyện 1 môn của 1 lớp

  • Được thi tất cả đề của môn bạn đăng ký có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi đáp với đội ngũ chuyên môn với những vấn đề chưa nắm rõ của môn bạn đang quan tâm.

Lớp đăng ký:

Môn đăng ký:

Đặt mua

VIP 2 - Combo tất cả các môn của 1 lớp

  • Được thi tất cả đề của tất cả các môn (Toán, Lí, Hóa, Anh, Văn,...) trong lớp bạn đăng ký có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi đáp với đội ngũ chuyên môn với tất cả những vấn đề chưa nắm rõ.
  • Ẩn tất cả các quảng cáo trên Website

Lớp đăng ký:

Đặt mua

VIP 3 - Combo tất cả các môn tất cả các lớp

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi đáp với đội ngũ chuyên môn với tất cả những vấn đề chưa nắm rõ.
  • Ẩn tất cả các quảng cáo trên Website

Bạn sẽ được luyện tất cả các môn của tất cả các lớp.

Đặt mua

tailieugiaovien.com.vn