Câu hỏi:

28/12/2019 1,568

Cho một đa giác đều 20 đỉnh nội tiếp trong đường tròn O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có số cách chọn 4 đỉnh:  

Hình hai mươi cạnh đều có 10 đường chéo đi qua tâm và chúng đều bằng nhau

Cứ hai đường chéo gộp lại ta được hai đường chéo của một hình chữ nhật

Vậy có tất cả   hình chữ nhật thỏa mãn 4 đỉnh là 4 trong 20 đỉnh của hình cho

Kết luận: 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D 

Gọi 2 số cuối là ab,là số điện thoại nên có đủ các chữ số từ 0 đến 9

Ta có a có 10 cách chọn, b khác a nên có 9 cách chọn. Vậy không gian mẫu có 9.10= 90 phần tử.

Vậy xá xuất gọi một lần dúng là 1/90

Lời giải

Chọn A 

Tổ có 12 người, chọn ra 4 người thì có cách

Còn lại 8 người, chọn tiếp ra 4 người thì có , còn lại 4 người là nhóm cuối.

Vậy không gian mẫu

Chỉ có 3 nữ và chia mỗi nhóm có đúng 1 nữ và 3 nam.

Nhóm 1 có cách.

Lúc đó còn lại 2 nữ, 6 nam, nhóm thứ 2 có =40 cách chọn.

Cuối cùng còn 4 người là một nhóm: có 1 cách.

Theo quy tắc nhân thì có : 252.40.1= 10080 cách

 Vậy xác suất cần tìm là

P = .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP