Câu hỏi:
05/05/2022 461Cho các số thực dương \(a,b,x,y\) thỏa mãn \(a >1,b >1\) và \({a^{x - 1}} = {b^y} = \sqrt[3]{{ab}}.\) Giá trị nhỏ nhất của biểu thức \(P = 3x + 4y\) thuộc tập hợp nào dưới đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A.
Ta có \({a^{x - 1}} = {b^y} = \sqrt[3]{{ab}} \Leftrightarrow \left[ \begin{array}{l}x = 1 + \frac{1}{3}{\log _a}ab = \frac{4}{3} + \frac{1}{3}{\log _a}b\\y = \frac{1}{3}{\log _b}ab = \frac{1}{3}\left( {1 + {{\log }_b}a} \right) = \frac{1}{3}\left( {1 + \frac{1}{{{{\log }_a}b}}} \right)\end{array} \right..\)
Thay vào \(P,\)ta được
\(P = 3x + 4y = 3\left( {\frac{4}{3} + \frac{1}{3}{{\log }_a}b} \right) + 4.\frac{1}{3}\left( {1 + \frac{1}{{{{\log }_a}b}}} \right)\)
\( = \frac{{16}}{3} + \left( {{{\log }_a}b + \frac{4}{{3{{\log }_a}b}}} \right)\)
Vì \(a >1,b >1\) nên \({\log _a}b >0.\) Áp dụng BĐT Cô-si, ta có:
\(P = \frac{{16}}{3} + \left( {{{\log }_a}b + \frac{4}{{3{{\log }_a}b}}} \right) \ge \frac{{16}}{3} + 2\sqrt {{{\log }_a}b.\frac{4}{{3{{\log }_a}b}}} = \frac{{16 + 4\sqrt 3 }}{3}.\)
Dấu “=” xảy ra khi và chỉ khi \({\log _a}b = \frac{4}{3}{\log _a}b \Leftrightarrow {\log _a}b = \frac{{2\sqrt 3 }}{3}.\)
Vậy giá trị nhỏ nhất của \(P\) bằng \(\frac{{16 + 4\sqrt 3 }}{3} \in \left( {7;9} \right].\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right).\) Bảng biến thiên của hàm số \(f'\left( x \right)\) như sau:
Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 2x} \right)\) là:
Câu 2:
Cho số phức \(z\) thỏa \(\left( {2 + i} \right)z - 4\left( {\overline z - i} \right) = - 8 + 19i.\) Mô đun của \(z\) bằng
Câu 3:
Hàm số \(y = \frac{{x - {m^2}}}{{x - 4}}\) đồng biến trên các khoảng \(\left( { - \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\) khi
Câu 4:
Cho đồ thị hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) như hình vẽ bên. Khẳng định nào sau đây là đúng
Câu 5:
Cho tích phân: \(I = \int\limits_1^e {\frac{{\sqrt {1 - \ln x} }}{x}dx} .\) Đặt \(u = \sqrt {1 - \ln x} .\) Khi đó \(I\) bằng
Câu 6:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right).\) Biết \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x\) và \(f\left( 2 \right) = \frac{1}{{\ln 2}}.\) Khi đó, \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} \) bằng
Câu 7:
Trong không gian \(Oxyz,\) cho điểm \(A\left( {1;2;5} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0.\) Phương trình đường thẳng qua \(A\) vuông góc với \(\left( P \right)\) là:
về câu hỏi!