Câu hỏi:

05/05/2022 600

Cho các số thực dương \(a,b,x,y\) thỏa mãn \(a >1,b >1\) và \({a^{x - 1}} = {b^y} = \sqrt[3]{{ab}}.\) Giá trị nhỏ nhất của biểu thức \(P = 3x + 4y\) thuộc tập hợp nào dưới đây? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Ta có \({a^{x - 1}} = {b^y} = \sqrt[3]{{ab}} \Leftrightarrow \left[ \begin{array}{l}x = 1 + \frac{1}{3}{\log _a}ab = \frac{4}{3} + \frac{1}{3}{\log _a}b\\y = \frac{1}{3}{\log _b}ab = \frac{1}{3}\left( {1 + {{\log }_b}a} \right) = \frac{1}{3}\left( {1 + \frac{1}{{{{\log }_a}b}}} \right)\end{array} \right..\)

Thay vào \(P,\)ta được

\(P = 3x + 4y = 3\left( {\frac{4}{3} + \frac{1}{3}{{\log }_a}b} \right) + 4.\frac{1}{3}\left( {1 + \frac{1}{{{{\log }_a}b}}} \right)\)

\( = \frac{{16}}{3} + \left( {{{\log }_a}b + \frac{4}{{3{{\log }_a}b}}} \right)\)

Vì \(a >1,b >1\) nên \({\log _a}b >0.\) Áp dụng BĐT Cô-si, ta có:

\(P = \frac{{16}}{3} + \left( {{{\log }_a}b + \frac{4}{{3{{\log }_a}b}}} \right) \ge \frac{{16}}{3} + 2\sqrt {{{\log }_a}b.\frac{4}{{3{{\log }_a}b}}} = \frac{{16 + 4\sqrt 3 }}{3}.\)

Dấu “=” xảy ra khi và chỉ khi \({\log _a}b = \frac{4}{3}{\log _a}b \Leftrightarrow {\log _a}b = \frac{{2\sqrt 3 }}{3}.\)

Vậy giá trị nhỏ nhất của \(P\) bằng \(\frac{{16 + 4\sqrt 3 }}{3} \in \left( {7;9} \right].\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Xét \(y = f\left( {{x^2} - 2x} \right) \Rightarrow y' = \left( {2x - 2} \right).f'\left( {{x^2} - 2x} \right)\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\f'\left( {{x^2} - 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} - 2x = {x_1} \in \left( { - \infty ; - 1} \right)\\{x^2} - 2x = {x_2} \in \left( { - 1;0} \right)\\{x^2} - 2x = {x_3} \in \left( {0;1} \right)\\{x^2} - 2x = {x_4} \in \left( {1; + \infty } \right)\end{array} \right.\)

Trường hợp 1: \({x^2} - 2x = {x_1} \in \left( { - \infty ; - 1} \right) \Leftrightarrow {x^2} - 2x - {x_1} = 0.\)

Ta có \(\Delta ' = 1 - 1.\left( { - {x_1}} \right) = 1 + {x_1} < 0,\forall {x_1} \in \left( { - \infty ; - 1} \right)\) nên phương trình vô nghiệm. Suy ra trường hợp này không có điểm cực trị.

Trường hợp 2: \({x^3} - 2x = {x_2} \in \left( { - 1;0} \right) \Leftrightarrow {x^2} - 2x - {x_2} = 0.\)

Ta có \(\Delta ' = 1 - 1.\left( { - {x_2}} \right) = 1 + {x_2} >0,\forall {x_2} \in \left( { - 1;0} \right)\) nên phương trình luôn có hai nghiệm phân biệt. Suy ra trường hợp này có hai điểm cực trị.

Trường hợp 3: \({x^2} - 2x = {x_3} \in \left( {0;1} \right).\) Xét thấy hệ số \(a\) và \(c\) trong phương trình luôn trái dấu nên phương trình luôn có hai nghiệm phân biệt. Suy ra trường hợp này có hai điểm cực trị.

Trường hợp 4: \({x^2} - 2x = {x_4} \in \left( {1; + \infty } \right).\) Xét thấy hệ số \(a\) và \(c\) trong phương trình luôn trái dấu nên phương trình luôn có hai nghiệm phân biệt. Suy ra trường hợp này có hai điểm cực trị.

Mặt khác, các hệ số trong các phương trình ở trường hợp 2, 3, 4 vừa xét đều khác nhau hệ số \(c\) nên các nghiệm của phương trình này đều khác nhau và đều khác 1.

Vậy hàm số \(y = f\left( {{x^2} - 2x} \right)\) có 7 điểm cực trị. Ta chọn đáp án A.

Câu 2

Lời giải

Đáp án B.

TXĐ: \(D = \left( { - \infty ;4} \right) \cup \left( {4; + \infty } \right).\)

Ta có \(y = \frac{{x - {m^2}}}{{x - 4}} \Rightarrow y' = \frac{{ - 4 + {m^2}}}{{{{\left( {x - 4} \right)}^2}}}.\)

Hàm số đồng biến trên các khoảng \(\left( { - \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\) khi và chỉ khi

\(y' = \frac{{ - 4 + {m^2}}}{{{{\left( {x - 4} \right)}^2}}} >0 \Leftrightarrow - 4 + {m^2} >0 \Leftrightarrow \left[ \begin{array}{l}m >2\\m < - 2\end{array} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP