Câu hỏi:
05/05/2022 305Tìm tất cả giá trị thực của tham số \(m\) sao cho khoảng \(\left( {2;3} \right)\) thuộc tập nghiệm của bất phương trình \({\log _5}\left( {{x^2} + 1} \right) >{\log _5}\left( {{x^2} + 4x + m} \right) - 1.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A.
Điều kiện xác định: \({x^2} + 4x + m >0.\)
Với điều kiện trên, bất phương trình tương đương với \(5\left( {{x^2} + 1} \right) >\left( {{x^2} + 4x + m} \right).\)
Để khoảng \(\left( {2;3} \right)\) thuộc tập nghiệm của bất phương trình thì hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 4x + m >0\\5\left( {{x^2} + 1} \right) >\left( {{x^2} + 4x + m} \right)\end{array} \right.\) nghiệm đúng với mọi \(x \in \left( {2;3} \right).\)
\( \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) = {x^2} + 4x >- m\\g\left( x \right) = 4{x^2} - 4x + 5 >m\end{array} \right.\) nghiệm đúng với mọi \(x \in \left( {2;3} \right).\)
Xét hàm số \(f\left( x \right) = {x^2} + 4x\) trên khoảng \(\left( {2;3} \right)\) có \(f'\left( x \right) = 2x + 4 >0,\forall x \in \left( {2;3} \right)\) suy ra \(f\left( x \right) >f\left( 2 \right) = 12.\) Do đó \(12 \ge - m \Leftrightarrow m \ge - 12\)
Xét hàm số \(g\left( x \right) = 4{x^2} - 4x + 5\) trên khoảng \(\left( {2;3} \right)\) có \(g'\left( x \right) = 8x - 4 >0,\forall x \in \left( {2;3} \right)\) suy ra \(g\left( x \right) >g\left( 2 \right) = 13.\) Do đó \(13 \ge m \Leftrightarrow m \le 13.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right).\) Bảng biến thiên của hàm số \(f'\left( x \right)\) như sau:
Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 2x} \right)\) là:
Câu 2:
Cho số phức \(z\) thỏa \(\left( {2 + i} \right)z - 4\left( {\overline z - i} \right) = - 8 + 19i.\) Mô đun của \(z\) bằng
Câu 3:
Hàm số \(y = \frac{{x - {m^2}}}{{x - 4}}\) đồng biến trên các khoảng \(\left( { - \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\) khi
Câu 4:
Cho đồ thị hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) như hình vẽ bên. Khẳng định nào sau đây là đúng
Câu 5:
Cho tích phân: \(I = \int\limits_1^e {\frac{{\sqrt {1 - \ln x} }}{x}dx} .\) Đặt \(u = \sqrt {1 - \ln x} .\) Khi đó \(I\) bằng
Câu 6:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right).\) Biết \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x\) và \(f\left( 2 \right) = \frac{1}{{\ln 2}}.\) Khi đó, \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} \) bằng
Câu 7:
Trong không gian \(Oxyz,\) cho điểm \(A\left( {1;2;5} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0.\) Phương trình đường thẳng qua \(A\) vuông góc với \(\left( P \right)\) là:
về câu hỏi!