Câu hỏi:

05/05/2022 2,055

Cho hình nón \(\left( N \right)\) có đỉnh \(S,\) bán kính đáy \(r = 1\) và độ dài đường sinh \(l = 2\sqrt 2 .\) Mặt cầu đi qua \(S\) và đường tròn đáy của \(\left( N \right)\) có bán kính bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Cho hình nón (N) có đỉnh S bán kính đáy r = 1 và độ dài đường sinh l = 2 căn 2 . Mặt cầu đi qua S và đường tròn đáy của  (ảnh 1)

Gọi \(I\) là tâm của mặt cầu đi qua \(S\) và đường thẳng đáy của \(\left( N \right).\)

\(R\) là bán kính của mặt cầu cần tìm.

Theo giả thiết, ta có \(SO = \sqrt {{l^2} - {r^2}} = \sqrt 7 .\)

Trường hợp 1. \(IO = SO - R = \sqrt 7 - R.\)

Trong tam giác vuông \(IOB,\) ta có \(I{B^2} = I{O^2} + O{B^2} \Leftrightarrow {R^2} = {\left( {\sqrt 7 - R} \right)^2} + 1 \Leftrightarrow R = \frac{{4\sqrt 7 }}{7}.\)

Trường hợp 2. \(IO = R - SO = R - \sqrt 7 .\)

Trong tam giác vuông \(IOB,\) ta có \(I{B^2} = I{O^2} + O{B^2} \Leftrightarrow {R^2} = {\left( {R - \sqrt 7 } \right)^2} + 1 \Leftrightarrow R = \frac{{4\sqrt 7 }}{7}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right).\) Bảng biến thiên của hàm số \(f'\left( x \right)\) như sau:

Cho hàm số f(x). Bảng biến thiên của hàm số f'(x) như sau:  Số điểm cực trị của hàm số y = f(x^2 - 2x) là: (ảnh 1)

  Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 2x} \right)\) là:

Xem đáp án » 05/05/2022 62,355

Câu 2:

Cho số phức \(z\) thỏa \(\left( {2 + i} \right)z - 4\left( {\overline z - i} \right) = - 8 + 19i.\) Mô đun của \(z\) bằng 

Xem đáp án » 05/05/2022 5,600

Câu 3:

Hàm số \(y = \frac{{x - {m^2}}}{{x - 4}}\) đồng biến trên các khoảng \(\left( { - \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\) khi 

Xem đáp án » 05/05/2022 5,448

Câu 4:

Cho đồ thị hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) như hình vẽ bên. Khẳng định nào sau đây là đúng

Cho đồ thị hàm số f(x) = ax^4 + bx^2 + c như hình vẽ bên. Khẳng định nào sau đây là đúng (ảnh 1)

Xem đáp án » 05/05/2022 4,846

Câu 5:

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right).\) Biết \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x\) và \(f\left( 2 \right) = \frac{1}{{\ln 2}}.\) Khi đó, \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} \) bằng

Xem đáp án » 05/05/2022 4,261

Câu 6:

Cho tích phân: \(I = \int\limits_1^e {\frac{{\sqrt {1 - \ln x} }}{x}dx} .\) Đặt \(u = \sqrt {1 - \ln x} .\) Khi đó \(I\) bằng

Xem đáp án » 05/05/2022 3,951

Câu 7:

Với \(a >0,a \ne 1,{\log _{{a^3}}}a\) bằng

Xem đáp án » 05/05/2022 3,814

Bình luận


Bình luận