Câu hỏi:

05/05/2022 580

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Cho hàm số y=f(x) liên tục trên R và có bảng biến thiên như sau: Số nghiệm của phương trình f(2^(3x^4 - 4x^2 + 2) + 1) = 0 (ảnh 1)

Số nghiệm của phương trình \(f\left( {{2^{3{x^4} - 4{x^2} + 2}}} \right) + 1 = 0\) là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Dựa vào bảng biến thiên, ta có

\(f\left( {{2^{3{x^4} - 4{x^2} + 2}}} \right) + 1 = 0 \Leftrightarrow f\left( {{2^{3{x^4} - 4{x^3} + 2}}} \right) = - 1 \Leftrightarrow \left[ \begin{array}{l}{2^{3{x^4} - 4{x^3} + 2}} = {a_1} < - 1\left( 1 \right)\\{2^{3{x^4} - 4{x^3} + 2}} = 2\\{2^{3{x^4} - 4{x^3} + 2}} = {a_2} >5\end{array} \right.\)</>

TH1: \({2^{3{x^4} - 4{x^3} + 2}} = 2\)

\( \Leftrightarrow 3{x^4} - 4{x^3} + 2 = 1 \Leftrightarrow {\left( {x - 1} \right)^2}\left( {3{x^3} + 2x + 1} \right) = 0 \Leftrightarrow x = 1\)

TH2: \({2^{3{x^4} - 4{x^2} + 2}} = {a_2}\)

\( \Leftrightarrow 3{x^4} - 4{x^3} + 2 = {\log _2}{a_2}\)

Xét hàm số \(g\left( x \right) = 3{x^4} - 4{x^3} + 2,\) khảo sát hàm số, ta được bảng biến thiên sau:

Cho hàm số y=f(x) liên tục trên R và có bảng biến thiên như sau: Số nghiệm của phương trình f(2^(3x^4 - 4x^2 + 2) + 1) = 0 (ảnh 1)

Do \({\log _2}{a_2} >{\log _2}5 >1\) nên \(3{x^4} - 4{x^3} + 2 = {\log _2}{a_2}\) có hai nghiệm phân biệt khác 1.

Vậy phương trình \(f\left( {{2^{3{x^4} - 4{x^3} + 2}}} \right) + 1 = 0\) có 3 nghiệm phân biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right).\) Bảng biến thiên của hàm số \(f'\left( x \right)\) như sau:

Cho hàm số f(x). Bảng biến thiên của hàm số f'(x) như sau:  Số điểm cực trị của hàm số y = f(x^2 - 2x) là: (ảnh 1)

  Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 2x} \right)\) là:

Xem đáp án » 05/05/2022 59,475

Câu 2:

Cho số phức \(z\) thỏa \(\left( {2 + i} \right)z - 4\left( {\overline z - i} \right) = - 8 + 19i.\) Mô đun của \(z\) bằng 

Xem đáp án » 05/05/2022 5,498

Câu 3:

Hàm số \(y = \frac{{x - {m^2}}}{{x - 4}}\) đồng biến trên các khoảng \(\left( { - \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\) khi 

Xem đáp án » 05/05/2022 5,270

Câu 4:

Cho đồ thị hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) như hình vẽ bên. Khẳng định nào sau đây là đúng

Cho đồ thị hàm số f(x) = ax^4 + bx^2 + c như hình vẽ bên. Khẳng định nào sau đây là đúng (ảnh 1)

Xem đáp án » 05/05/2022 4,734

Câu 5:

Cho tích phân: \(I = \int\limits_1^e {\frac{{\sqrt {1 - \ln x} }}{x}dx} .\) Đặt \(u = \sqrt {1 - \ln x} .\) Khi đó \(I\) bằng

Xem đáp án » 05/05/2022 3,575

Câu 6:

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right).\) Biết \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x\) và \(f\left( 2 \right) = \frac{1}{{\ln 2}}.\) Khi đó, \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} \) bằng

Xem đáp án » 05/05/2022 3,545

Câu 7:

Trong không gian \(Oxyz,\) cho điểm \(A\left( {1;2;5} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0.\) Phương trình đường thẳng qua \(A\) vuông góc với \(\left( P \right)\) là:

Xem đáp án » 05/05/2022 3,062

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store