Câu hỏi:

06/05/2022 295 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho có bao nhiêu đường tiệm cận?

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho có bao nhiêu đường tiệm cận? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Ta có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\) nên \(y = 0\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) = - \infty ,\mathop {\lim }\limits_{x \to {{\left( 0 \right)}^ + }} f\left( x \right) = + \infty \) nên \(x = - 2,x = 0\) là tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh 6a, tam giác SAB đều và nằm trong mặt phẳng vuông góc  (ảnh 1)

Vẽ đường cao

\(SO\) của tam giác đều \(SAB.\)

Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)

Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)

Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)

Lời giải

Đáp án A.

Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là

\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)

Vậy số giao điểm cần tìm là 1.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP