Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau. Mệnh đề nào dưới đây là đúng
A.Hàm số có hai điểm cực trị.
B.Hàm số có một điểm cực trị.
C.Hàm số đạt cực trị tại \(x = 1.\)
D.Hàm số đạt cực tiểu tại \(x = - 2.\)
Quảng cáo
Trả lời:

Đáp án A.
Hàm số có hai điểm cực trị \(x = - 1\) và \(x = 0.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\(36\sqrt 3 {a^3}.\)
B.\(36{a^3}.\)
C.\(36\sqrt 2 {a^3}.\)
D. \(108\sqrt 3 {a^3}.\)
Lời giải
Đáp án A.

Vẽ đường cao
\(SO\) của tam giác đều \(SAB.\)
Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)
Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)
Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)
Câu 2
A. 1.
B. 3.
C. 0.
D. 2.
Lời giải
Đáp án A.
Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là
\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)
Vậy số giao điểm cần tìm là 1.
Câu 3
A.\(\left[ {0; + \infty } \right).\)
B. \(\left( { - \infty ; + \infty } \right).\)
C.\(\left( { - \infty ;0} \right).\)
D.\(\left( {0; + \infty } \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\(\mathop {\min }\limits_{\left( {0; + \infty } \right)} y = 5.\)
B.\(\mathop {\min }\limits_{\left( {0; + \infty } \right)} y = 4.\)
C.\(\mathop {\min }\limits_{\left( {0; + \infty } \right)} y = 3.\)
D. \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} y = 8.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.Hàm số đồng biến trên \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right).\)
B. Hàm số nghịch biến trên \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
C. Hàm số nghịch biến trên \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right).\)
D. Hàm số nghịch biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\(\left( {0;1} \right).\)
B.\(\left( { - \infty ; - 3} \right).\)
C.\(\left( { - \infty ; - 1} \right).\)
D. \(\left( { - 3; - 2} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\( - 6.\)
B. \ (- 8. \)
C. 8.
D. \ (- 1. \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.