Câu hỏi:

06/05/2022 1,440

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ dưới đây

Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây Số nghiệm thực của phương trình (ảnh 1)

Số nghiệm thực của phương trình \(3f\left( x \right) + 2 = 0\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

\(3f\left( x \right) + 2 = 0 \Leftrightarrow f\left( x \right) = - \frac{2}{3}\)

Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây Số nghiệm thực của phương trình (ảnh 2)

Căn cứ vào bảng biến thiên thì phương trình \(3f\left( x \right) + 2 = 0 \Leftrightarrow f\left( x \right) = - \frac{2}{3}\) có 3 nghiệm phân biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh 6a, tam giác SAB đều và nằm trong mặt phẳng vuông góc  (ảnh 1)

Vẽ đường cao

\(SO\) của tam giác đều \(SAB.\)

Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)

Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)

Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)

Lời giải

Đáp án A.

Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là

\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)

Vậy số giao điểm cần tìm là 1.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP