Câu hỏi:
06/05/2022 1,369Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A.\) Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(\left( {ABC} \right).\) Biết khoảng cách giữa hai đường thẳng \(AA'\) và \(BC\) bằng \(\frac{{\sqrt {17} }}{6}a,\) cạnh bên \(AA'\) bằng \(2a.\) Tính theo \(a\) thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) biết \(AB < a\sqrt 3 .\)
Quảng cáo
Trả lời:
Đáp án A.
Gọi \(N\) là trung điểm của \(BC,G\) là trọng tâm tam giác \(ABC\)
Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(\left( {ABC} \right)\) nên \(A'G \bot \left( {ABC} \right)\)
Tam giác \(ABC\) vuông cân tại \(A\) nên \(AN \bot BC\left( 1 \right)\)
Lại có \(A'G \bot BC\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có \(BC \bot \left( {A'AN} \right)\)
Trong mặt phẳng \(\left( {A'AN} \right)\) từ \(N\) kẻ \(NH \bot A'A\) suy ra \(NH\) là ddonanj vuông góc chung của \(AA'\) và \(BC\) do đó \(d\left( {A'A;BC} \right) = NH = \frac{{\sqrt {17} }}{6}a\)
Đặt \(AB = 2x\)
Vì tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = 2x\sqrt 2 ;AN = \frac{1}{2}BC = x\sqrt 2 \)
\(G\) là trọng tâm tam giác \(ABC \Rightarrow AG = \frac{2}{3}AN = \frac{{2x\sqrt 2 }}{3}\)
Trong tam giác vuông \(A'AG\) có \(A'{G^2} = A'{A^2} - A{G^2} = 4{a^2} - \frac{{8{x^2}}}{9}\)
Trong mặt phẳng \(\left( {A'AN} \right)\) kẻ \(GK//NH \Rightarrow GK = \frac{2}{3}NH = \frac{{a\sqrt {17} }}{9}\)
Trong tam giác vuông \(A'AG\) có
\(\frac{1}{{G{K^2}}} = \frac{1}{{A'{G^2}}} + \frac{1}{{A{G^2}}} \Leftrightarrow \frac{{81}}{{17{a^2}}} = \frac{1}{{4{a^2} - \frac{{8{x^2}}}{9}}} + \frac{1}{{\frac{{8{x^2}}}{9}}}\)
\( \Leftrightarrow \frac{{81}}{{17{a^2}}} = \frac{{4{a^2}}}{{\left( {4{a^2} - \frac{{8{x^2}}}{9}} \right).\frac{{8{x^2}}}{9}}}\)
\( \Leftrightarrow 64{x^4} - 288{a^2}{x^2} + 68{a^4} = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{17}}{4}{a^2} \Rightarrow x = \frac{{\sqrt {17} }}{2}a \Rightarrow AB = a\sqrt {17} \\{x^2} = \frac{1}{4}{a^2} \Rightarrow x = \frac{1}{2}a \Rightarrow AB = a\end{array} \right.\)
Mà \(AB < a\sqrt 3 \) nên \(AB = a\)
Cách để tính AB
Ta có \(NH.AA' = A'G.AN\) (vì cùng bằng 2 lần diện tích tam giác \[A'NA)\]
\( \Leftrightarrow \frac{{a\sqrt {17} }}{6}.2a = \sqrt {4{a^2} - \frac{{8{x^2}}}{9}} .x\sqrt 2 \)
\( \Leftrightarrow 16{x^4} - 72{a^2}{x^2} + 17{a^4} = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{17}}{4}{a^2} \Rightarrow x = \frac{{\sqrt {17} }}{2}a \Rightarrow AB = a\sqrt {17} \\{x^2} = \frac{1}{4}{a^2} \Rightarrow x = \frac{1}{2}a \Rightarrow AB = a\end{array} \right.\)
Mà \(AB < a\sqrt 3 \) nên \(AB = a.\)
\(A'{G^2} = A'{A^2} - A{G^2} = 4{a^2} - \frac{{8{x^2}}}{9} = \frac{{34{a^2}}}{9} \Rightarrow A'G = \frac{{a\sqrt {34} }}{3}\)
Thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) là
\(V = A'G.{S_{ABC}} = \frac{{a\sqrt {34} }}{3}.\frac{1}{2}.a.a = \frac{{\sqrt {34} {a^3}}}{6}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A.
Vẽ đường cao
\(SO\) của tam giác đều \(SAB.\)
Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)
Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)
Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)
Lời giải
Đáp án A.
Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là
\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)
Vậy số giao điểm cần tìm là 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 11)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận