Câu hỏi:

06/05/2022 1,372

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A.\) Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(\left( {ABC} \right).\) Biết khoảng cách giữa hai đường thẳng \(AA'\) và \(BC\) bằng \(\frac{{\sqrt {17} }}{6}a,\) cạnh bên \(AA'\) bằng \(2a.\) Tính theo \(a\) thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) biết \(AB < a\sqrt 3 .\) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác vuông cân tại A. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ảnh 1)

Gọi \(N\) là trung điểm của \(BC,G\) là trọng tâm tam giác \(ABC\)

Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(\left( {ABC} \right)\) nên \(A'G \bot \left( {ABC} \right)\)

Tam giác \(ABC\) vuông cân tại \(A\) nên \(AN \bot BC\left( 1 \right)\)

Lại có \(A'G \bot BC\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có \(BC \bot \left( {A'AN} \right)\)

Trong mặt phẳng \(\left( {A'AN} \right)\) từ \(N\) kẻ \(NH \bot A'A\) suy ra \(NH\) là ddonanj vuông góc chung của \(AA'\) và \(BC\) do đó \(d\left( {A'A;BC} \right) = NH = \frac{{\sqrt {17} }}{6}a\)

Đặt \(AB = 2x\)

Vì tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = 2x\sqrt 2 ;AN = \frac{1}{2}BC = x\sqrt 2 \)

\(G\) là trọng tâm tam giác \(ABC \Rightarrow AG = \frac{2}{3}AN = \frac{{2x\sqrt 2 }}{3}\)

Trong tam giác vuông \(A'AG\) có \(A'{G^2} = A'{A^2} - A{G^2} = 4{a^2} - \frac{{8{x^2}}}{9}\)

Trong mặt phẳng \(\left( {A'AN} \right)\) kẻ \(GK//NH \Rightarrow GK = \frac{2}{3}NH = \frac{{a\sqrt {17} }}{9}\)

Trong tam giác vuông \(A'AG\) có

\(\frac{1}{{G{K^2}}} = \frac{1}{{A'{G^2}}} + \frac{1}{{A{G^2}}} \Leftrightarrow \frac{{81}}{{17{a^2}}} = \frac{1}{{4{a^2} - \frac{{8{x^2}}}{9}}} + \frac{1}{{\frac{{8{x^2}}}{9}}}\)

\( \Leftrightarrow \frac{{81}}{{17{a^2}}} = \frac{{4{a^2}}}{{\left( {4{a^2} - \frac{{8{x^2}}}{9}} \right).\frac{{8{x^2}}}{9}}}\)

\( \Leftrightarrow 64{x^4} - 288{a^2}{x^2} + 68{a^4} = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{17}}{4}{a^2} \Rightarrow x = \frac{{\sqrt {17} }}{2}a \Rightarrow AB = a\sqrt {17} \\{x^2} = \frac{1}{4}{a^2} \Rightarrow x = \frac{1}{2}a \Rightarrow AB = a\end{array} \right.\)

Mà \(AB < a\sqrt 3 \) nên \(AB = a\)

Cách để tính AB

Ta có \(NH.AA' = A'G.AN\) (vì cùng bằng 2 lần diện tích tam giác \[A'NA)\]

\( \Leftrightarrow \frac{{a\sqrt {17} }}{6}.2a = \sqrt {4{a^2} - \frac{{8{x^2}}}{9}} .x\sqrt 2 \)

\( \Leftrightarrow 16{x^4} - 72{a^2}{x^2} + 17{a^4} = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{17}}{4}{a^2} \Rightarrow x = \frac{{\sqrt {17} }}{2}a \Rightarrow AB = a\sqrt {17} \\{x^2} = \frac{1}{4}{a^2} \Rightarrow x = \frac{1}{2}a \Rightarrow AB = a\end{array} \right.\)

Mà \(AB < a\sqrt 3 \) nên \(AB = a.\)

\(A'{G^2} = A'{A^2} - A{G^2} = 4{a^2} - \frac{{8{x^2}}}{9} = \frac{{34{a^2}}}{9} \Rightarrow A'G = \frac{{a\sqrt {34} }}{3}\)

Thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) là

\(V = A'G.{S_{ABC}} = \frac{{a\sqrt {34} }}{3}.\frac{1}{2}.a.a = \frac{{\sqrt {34} {a^3}}}{6}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh 6a, tam giác SAB đều và nằm trong mặt phẳng vuông góc  (ảnh 1)

Vẽ đường cao

\(SO\) của tam giác đều \(SAB.\)

Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)

Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)

Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)

Lời giải

Đáp án A.

Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là

\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)

Vậy số giao điểm cần tìm là 1.

Câu 3

Tập xác định của hàm số \(y = {x^{\sqrt 3 }}\) là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tính giá trị nhỏ nhất của hàm số \(y = x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hàm số \(y = \frac{{5x + 9}}{{x - 1}}\) khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay