Câu hỏi:

06/05/2022 1,409

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A.\) Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(\left( {ABC} \right).\) Biết khoảng cách giữa hai đường thẳng \(AA'\) và \(BC\) bằng \(\frac{{\sqrt {17} }}{6}a,\) cạnh bên \(AA'\) bằng \(2a.\) Tính theo \(a\) thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) biết \(AB < a\sqrt 3 .\) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác vuông cân tại A. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ảnh 1)

Gọi \(N\) là trung điểm của \(BC,G\) là trọng tâm tam giác \(ABC\)

Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(\left( {ABC} \right)\) nên \(A'G \bot \left( {ABC} \right)\)

Tam giác \(ABC\) vuông cân tại \(A\) nên \(AN \bot BC\left( 1 \right)\)

Lại có \(A'G \bot BC\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có \(BC \bot \left( {A'AN} \right)\)

Trong mặt phẳng \(\left( {A'AN} \right)\) từ \(N\) kẻ \(NH \bot A'A\) suy ra \(NH\) là ddonanj vuông góc chung của \(AA'\) và \(BC\) do đó \(d\left( {A'A;BC} \right) = NH = \frac{{\sqrt {17} }}{6}a\)

Đặt \(AB = 2x\)

Vì tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = 2x\sqrt 2 ;AN = \frac{1}{2}BC = x\sqrt 2 \)

\(G\) là trọng tâm tam giác \(ABC \Rightarrow AG = \frac{2}{3}AN = \frac{{2x\sqrt 2 }}{3}\)

Trong tam giác vuông \(A'AG\) có \(A'{G^2} = A'{A^2} - A{G^2} = 4{a^2} - \frac{{8{x^2}}}{9}\)

Trong mặt phẳng \(\left( {A'AN} \right)\) kẻ \(GK//NH \Rightarrow GK = \frac{2}{3}NH = \frac{{a\sqrt {17} }}{9}\)

Trong tam giác vuông \(A'AG\) có

\(\frac{1}{{G{K^2}}} = \frac{1}{{A'{G^2}}} + \frac{1}{{A{G^2}}} \Leftrightarrow \frac{{81}}{{17{a^2}}} = \frac{1}{{4{a^2} - \frac{{8{x^2}}}{9}}} + \frac{1}{{\frac{{8{x^2}}}{9}}}\)

\( \Leftrightarrow \frac{{81}}{{17{a^2}}} = \frac{{4{a^2}}}{{\left( {4{a^2} - \frac{{8{x^2}}}{9}} \right).\frac{{8{x^2}}}{9}}}\)

\( \Leftrightarrow 64{x^4} - 288{a^2}{x^2} + 68{a^4} = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{17}}{4}{a^2} \Rightarrow x = \frac{{\sqrt {17} }}{2}a \Rightarrow AB = a\sqrt {17} \\{x^2} = \frac{1}{4}{a^2} \Rightarrow x = \frac{1}{2}a \Rightarrow AB = a\end{array} \right.\)

Mà \(AB < a\sqrt 3 \) nên \(AB = a\)

Cách để tính AB

Ta có \(NH.AA' = A'G.AN\) (vì cùng bằng 2 lần diện tích tam giác \[A'NA)\]

\( \Leftrightarrow \frac{{a\sqrt {17} }}{6}.2a = \sqrt {4{a^2} - \frac{{8{x^2}}}{9}} .x\sqrt 2 \)

\( \Leftrightarrow 16{x^4} - 72{a^2}{x^2} + 17{a^4} = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{17}}{4}{a^2} \Rightarrow x = \frac{{\sqrt {17} }}{2}a \Rightarrow AB = a\sqrt {17} \\{x^2} = \frac{1}{4}{a^2} \Rightarrow x = \frac{1}{2}a \Rightarrow AB = a\end{array} \right.\)

Mà \(AB < a\sqrt 3 \) nên \(AB = a.\)

\(A'{G^2} = A'{A^2} - A{G^2} = 4{a^2} - \frac{{8{x^2}}}{9} = \frac{{34{a^2}}}{9} \Rightarrow A'G = \frac{{a\sqrt {34} }}{3}\)

Thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) là

\(V = A'G.{S_{ABC}} = \frac{{a\sqrt {34} }}{3}.\frac{1}{2}.a.a = \frac{{\sqrt {34} {a^3}}}{6}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh 6a, tam giác SAB đều và nằm trong mặt phẳng vuông góc  (ảnh 1)

Vẽ đường cao

\(SO\) của tam giác đều \(SAB.\)

Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)

Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)

Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)

Lời giải

Đáp án A.

Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là

\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)

Vậy số giao điểm cần tìm là 1.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP