Câu hỏi:

06/05/2022 1,062

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \[AB = 3,BC = 4,SA = 2\]. Tam giác SAC nằm trong mặt phẳng vuông góc với đáy và có diện tích bằng 4. Côsin của góc giữa hai mặt phẳng (SAB) và (SAC) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 3,BC = 4,SA = 2. Tam giác SAC nằm trong mặt phẳng  (ảnh 1)

TH1: \(H\) thuộc đoạn thẳng \(AC.\)

+ Kẻ \(SH \bot AC \Rightarrow SH \bot \left( {ABCD} \right)\) mặt khác \({S_{\Delta SAC}} = \frac{1}{2}SH.AC = 4 \Leftrightarrow SH = \frac{8}{5}\)

\(AH = \frac{6}{5};\sin \widehat {SAC} = \frac{{SH}}{{SA}} = \frac{4}{5}.\)

+ Kẻ \(BK \bot AC \Rightarrow BK \bot \left( {SAC} \right)\) kẻ \(KL \bot SA \Rightarrow SA \bot \left( {BKL} \right) \Rightarrow \left( {\left( {SAB} \right),\left( {SBC} \right)} \right) = \widehat {BLK}\)

Ta có: \(\frac{1}{{B{K^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{C^2}}} \Rightarrow BK = \frac{{12}}{5}\) và \(AK = \frac{9}{5};KL = AK.\sin \widehat {SAC} = \frac{{36}}{{25}}\)

\(BL = \frac{{12\sqrt {34} }}{{25}};\cos \widehat {BLK} = \frac{{KL}}{{BL}} = \frac{{3\sqrt {34} }}{{34}}\)

TH2. \(H\) không thuộc đoạn thẳng \(AC.\)

 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 3,BC = 4,SA = 2. Tam giác SAC nằm trong mặt phẳng  (ảnh 2)

+ Kẻ \(SH \bot AC \Rightarrow SH \bot \left( {ABCD} \right)\) mặt khác \({S_{\Delta SAC}} = \frac{1}{2}SH.AC = 4 \Leftrightarrow SH = \frac{8}{5}\)

\(AH = \frac{6}{5};\sin \widehat {SAH} = \frac{{SH}}{{SA}} = \frac{4}{5}.\)

+ Kẻ \(BK \bot AC \Rightarrow BK \bot \left( {SAC} \right)\) kẻ \(KE \bot SA \Rightarrow \left( {\left( {SAB} \right),\left( {SBC} \right)} \right) = \widehat {BEK}\)

Ta có: \(\frac{1}{{B{K^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{C^2}}} \Rightarrow BK = \frac{{12}}{5}\) và \(AK = \frac{9}{5};KE = AK.\sin \widehat {SAH} = \frac{{36}}{{25}}\)

\(BE = \frac{{12\sqrt {34} }}{{25}};\cos \widehat {BEK} = \frac{{KL}}{{BL}} = \frac{{3\sqrt {34} }}{{34}}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng

Xem đáp án » 06/05/2022 27,058

Câu 2:

Số giao điểm của đồ thị \(y = {x^3} - 2{x^2} + 3x - 2\) và trục hoành là

Xem đáp án » 06/05/2022 12,319

Câu 3:

Tập xác định của hàm số \(y = {x^{\sqrt 3 }}\) là 

Xem đáp án » 06/05/2022 9,541

Câu 4:

Tính giá trị nhỏ nhất của hàm số \(y = x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right).\)

Xem đáp án » 06/05/2022 7,559

Câu 5:

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng

Cho hàm số f(x) có đạo hàm trên R là hàm số f'(x). Biết đồ thị hàm số f'(x) được cho như hình vẽ. Hàm số f(x) nghịch biến  (ảnh 1)

Xem đáp án » 06/05/2022 5,220

Câu 6:

Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{34}}{{\sqrt {{{\left( {{x^3} - 3x + 2m} \right)}^2}} + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng 2. Tổng tất cả các phần tử của \(S\) bằng  

Xem đáp án » 06/05/2022 5,133

Câu 7:

Cho hàm số \(y = \frac{{5x + 9}}{{x - 1}}\) khẳng định nào sau đây là đúng?

Xem đáp án » 06/05/2022 4,443
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay