Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \[AB = 3,BC = 4,SA = 2\]. Tam giác SAC nằm trong mặt phẳng vuông góc với đáy và có diện tích bằng 4. Côsin của góc giữa hai mặt phẳng (SAB) và (SAC) bằng
Quảng cáo
Trả lời:
Đáp án D.

TH1: \(H\) thuộc đoạn thẳng \(AC.\)
+ Kẻ \(SH \bot AC \Rightarrow SH \bot \left( {ABCD} \right)\) mặt khác \({S_{\Delta SAC}} = \frac{1}{2}SH.AC = 4 \Leftrightarrow SH = \frac{8}{5}\)
\(AH = \frac{6}{5};\sin \widehat {SAC} = \frac{{SH}}{{SA}} = \frac{4}{5}.\)
+ Kẻ \(BK \bot AC \Rightarrow BK \bot \left( {SAC} \right)\) kẻ \(KL \bot SA \Rightarrow SA \bot \left( {BKL} \right) \Rightarrow \left( {\left( {SAB} \right),\left( {SBC} \right)} \right) = \widehat {BLK}\)
Ta có: \(\frac{1}{{B{K^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{C^2}}} \Rightarrow BK = \frac{{12}}{5}\) và \(AK = \frac{9}{5};KL = AK.\sin \widehat {SAC} = \frac{{36}}{{25}}\)
\(BL = \frac{{12\sqrt {34} }}{{25}};\cos \widehat {BLK} = \frac{{KL}}{{BL}} = \frac{{3\sqrt {34} }}{{34}}\)
TH2. \(H\) không thuộc đoạn thẳng \(AC.\)

+ Kẻ \(SH \bot AC \Rightarrow SH \bot \left( {ABCD} \right)\) mặt khác \({S_{\Delta SAC}} = \frac{1}{2}SH.AC = 4 \Leftrightarrow SH = \frac{8}{5}\)
\(AH = \frac{6}{5};\sin \widehat {SAH} = \frac{{SH}}{{SA}} = \frac{4}{5}.\)
+ Kẻ \(BK \bot AC \Rightarrow BK \bot \left( {SAC} \right)\) kẻ \(KE \bot SA \Rightarrow \left( {\left( {SAB} \right),\left( {SBC} \right)} \right) = \widehat {BEK}\)
Ta có: \(\frac{1}{{B{K^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{C^2}}} \Rightarrow BK = \frac{{12}}{5}\) và \(AK = \frac{9}{5};KE = AK.\sin \widehat {SAH} = \frac{{36}}{{25}}\)
\(BE = \frac{{12\sqrt {34} }}{{25}};\cos \widehat {BEK} = \frac{{KL}}{{BL}} = \frac{{3\sqrt {34} }}{{34}}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A.

Vẽ đường cao
\(SO\) của tam giác đều \(SAB.\)
Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)
Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)
Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)
Lời giải
Đáp án A.
Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là
\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)
Vậy số giao điểm cần tìm là 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.