Câu hỏi:

06/05/2022 4,799

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông và \(AB = BC = a,AA' = a\sqrt 2 ,M\) là trung điểm \(BC.\) Tính khoảng cách \(d\) của hai đường thẳng \(AM\) và \(B'C.\) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

 Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông và AB = BC = a,AA' = a căn 2 ,M là trung điểm BC. (ảnh 1)

Ta có \(AB = BC = a\) nên \(\Delta ABC\) vuông cân tại \(B.\)

Thể tích khối lăng trụ \(ABC.A'B'C'\) và \({V_{ABC.A'B'C'}} = AA'.{S_{\Delta ABC}} = a\sqrt 2 .\frac{1}{2}{a^2} = \frac{{{a^3}\sqrt 2 }}{2}\) (đvtt).

Gọi \(E\) là trung điểm \(BB'.\) Khi đó \(B'C//EM \Rightarrow B'C//\left( {AME} \right).\)

Vậy \(d\left( {AM,B'C} \right) = d\left( {\left( {AME} \right),B'C} \right) = d\left( {C,\left( {AME} \right)} \right) = d\left( {A,\left( {AME} \right)} \right).\)

Gọi \(h\) là khoảng cách từ \(A\) đến \(\left( {AME} \right).\)

Ta nhận thấy tứ diện \(B.AME\) có \(BE,BM,BA\) đôi một vuông góc.

Khi đó \(\frac{1}{{{h^2}}} = \frac{1}{{B{M^2}}} + \frac{1}{{B{E^2}}} + \frac{1}{{B{A^2}}} \Leftrightarrow \frac{1}{{{h^2}}} = \frac{4}{{{a^2}}} + \frac{2}{{{a^2}}} + \frac{1}{{{a^2}}} = \frac{7}{{{a^2}}} \Rightarrow h = \frac{{a\sqrt 7 }}{7}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh 6a, tam giác SAB đều và nằm trong mặt phẳng vuông góc  (ảnh 1)

Vẽ đường cao

\(SO\) của tam giác đều \(SAB.\)

Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)

Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)

Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)

Lời giải

Đáp án A.

Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là

\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)

Vậy số giao điểm cần tìm là 1.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP