Câu hỏi:

06/05/2022 322

Cho hình tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc \(AB = 6a,AC = 8a,AD = 12a,\) với \(a >0,a \in \mathbb{R}.\) Gọi \(E,F\) tương ứng là trung điểm của hai cạnh \(BC,BD.\) Tính khoảng cách \(d\) từ điểm \(B\) đến mặt phẳng \(\left( {AEF} \right)\) theo \(a.\)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp ánA.

Cho hình tứ diện ABCD có AB,AC,AD đôi một vuông góc AB = 6a,AC = 8a,AD = 12a, với a >0,a thuộc R. Gọi E,F (ảnh 1)

Cách 1:

Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD \bot \left( {ABC} \right).\)

Gọi \(K\) là trung điểm của \(AB,\) vì \(F\) là trung điểm của \(BD\) suy ra \(FK//AD\) mà \(AD \bot \left( {ABC} \right) \Rightarrow FK \bot \left( {ABC} \right)\) hay \(FK \bot \left( {AKE} \right).\)

Kẻ \(\left\{ \begin{array}{l}KG \bot AE\left( {G \in AE} \right)\\KH \bot FG\left( {H \in GF} \right)\end{array} \right. \Rightarrow d\left( {K,\left( {AEF} \right)} \right) = KH.\) Mặt khác \(BK\) cắt mặt phẳng \(\left( {AEF} \right)\) tại \(A.\)

Suy ra \(\frac{{d\left( {B,\left( {AEF} \right)} \right)}}{{d\left( {K,\left( {AEF} \right)} \right)}} = \frac{{BA}}{{KA}} = 2 \Rightarrow d\left( {B,\left( {AEF} \right)} \right) = 2d\left( {K,\left( {AEF} \right)} \right).\)

Trong tam giác \(AKE\) vuông tại \(K\) và tam giác \(FKG\) vuông tại \(K,\) ta có:

\(\frac{1}{{K{H^2}}} = \frac{1}{{K{F^2}}} + \frac{1}{{K{G^2}}} = \frac{1}{{K{F^2}}} + \frac{1}{{K{A^2}}} + \frac{1}{{K{E^2}}} = \frac{1}{{{{\left( {6a} \right)}^2}}} + \frac{1}{{{{\left( {3a} \right)}^2}}} + \frac{1}{{{{\left( {4a} \right)}^2}}} = \frac{{29}}{{144{a^2}}} \Rightarrow KH = \frac{{12\sqrt {29} a}}{{29}}.\)

Vậy \(d = \frac{{24\sqrt {29} a}}{{29}}.\)

Cách 2: Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD \bot \left( {ABC} \right).\) Chọn hệ trục tọa độ \(Axyz\) như hình vẽ, chọn \(a = 1,\) ta có \(A\left( {0;0;0} \right),B\left( {0;6;0} \right),E\left( {4;3;0} \right),F\left( {0;3;6} \right).\)

Ta có \(\overrightarrow {AE} = \left( {4;3;0} \right),\overrightarrow {AF} = \left( {0;3;6} \right) \Rightarrow \left[ {\overrightarrow {AE} ,\overrightarrow {AF} } \right] = \left( {18; - 24;12} \right) = 6\left( {3; - 4;2} \right).\)

Mặt phẳng \(\left( {AEF} \right)\) nhận \(\overrightarrow n = \left( {3; - 4;2} \right)\) làm một vectơ pháp tuyến và đi qua \(A\left( {0;0;0} \right)\) có phương trình là: \(3x - 4y + 2z = 0.\)

Vậy \(d\left( {B,\left( {AEF} \right)} \right) = \frac{{\left| {3.0 - 4.6 + 2.0} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2} + {2^2}} }} = \frac{{24\sqrt {29} }}{{29}}.\)

Vì \(a = 1\) nên \(d = \frac{{24\sqrt {29} a}}{{29}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng

Xem đáp án » 06/05/2022 25,743

Câu 2:

Số giao điểm của đồ thị \(y = {x^3} - 2{x^2} + 3x - 2\) và trục hoành là

Xem đáp án » 06/05/2022 11,809

Câu 3:

Tập xác định của hàm số \(y = {x^{\sqrt 3 }}\) là 

Xem đáp án » 06/05/2022 7,909

Câu 4:

Tính giá trị nhỏ nhất của hàm số \(y = x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right).\)

Xem đáp án » 06/05/2022 7,342

Câu 5:

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng

Cho hàm số f(x) có đạo hàm trên R là hàm số f'(x). Biết đồ thị hàm số f'(x) được cho như hình vẽ. Hàm số f(x) nghịch biến  (ảnh 1)

Xem đáp án » 06/05/2022 5,060

Câu 6:

Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{34}}{{\sqrt {{{\left( {{x^3} - 3x + 2m} \right)}^2}} + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng 2. Tổng tất cả các phần tử của \(S\) bằng  

Xem đáp án » 06/05/2022 4,931

Câu 7:

Cho hàm số \(y = \frac{{5x + 9}}{{x - 1}}\) khẳng định nào sau đây là đúng?

Xem đáp án » 06/05/2022 4,210

Bình luận


Bình luận