Câu hỏi:

06/05/2022 381

Cho hình tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc \(AB = 6a,AC = 8a,AD = 12a,\) với \(a >0,a \in \mathbb{R}.\) Gọi \(E,F\) tương ứng là trung điểm của hai cạnh \(BC,BD.\) Tính khoảng cách \(d\) từ điểm \(B\) đến mặt phẳng \(\left( {AEF} \right)\) theo \(a.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp ánA.

Cho hình tứ diện ABCD có AB,AC,AD đôi một vuông góc AB = 6a,AC = 8a,AD = 12a, với a >0,a thuộc R. Gọi E,F (ảnh 1)

Cách 1:

Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD \bot \left( {ABC} \right).\)

Gọi \(K\) là trung điểm của \(AB,\) vì \(F\) là trung điểm của \(BD\) suy ra \(FK//AD\) mà \(AD \bot \left( {ABC} \right) \Rightarrow FK \bot \left( {ABC} \right)\) hay \(FK \bot \left( {AKE} \right).\)

Kẻ \(\left\{ \begin{array}{l}KG \bot AE\left( {G \in AE} \right)\\KH \bot FG\left( {H \in GF} \right)\end{array} \right. \Rightarrow d\left( {K,\left( {AEF} \right)} \right) = KH.\) Mặt khác \(BK\) cắt mặt phẳng \(\left( {AEF} \right)\) tại \(A.\)

Suy ra \(\frac{{d\left( {B,\left( {AEF} \right)} \right)}}{{d\left( {K,\left( {AEF} \right)} \right)}} = \frac{{BA}}{{KA}} = 2 \Rightarrow d\left( {B,\left( {AEF} \right)} \right) = 2d\left( {K,\left( {AEF} \right)} \right).\)

Trong tam giác \(AKE\) vuông tại \(K\) và tam giác \(FKG\) vuông tại \(K,\) ta có:

\(\frac{1}{{K{H^2}}} = \frac{1}{{K{F^2}}} + \frac{1}{{K{G^2}}} = \frac{1}{{K{F^2}}} + \frac{1}{{K{A^2}}} + \frac{1}{{K{E^2}}} = \frac{1}{{{{\left( {6a} \right)}^2}}} + \frac{1}{{{{\left( {3a} \right)}^2}}} + \frac{1}{{{{\left( {4a} \right)}^2}}} = \frac{{29}}{{144{a^2}}} \Rightarrow KH = \frac{{12\sqrt {29} a}}{{29}}.\)

Vậy \(d = \frac{{24\sqrt {29} a}}{{29}}.\)

Cách 2: Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD \bot \left( {ABC} \right).\) Chọn hệ trục tọa độ \(Axyz\) như hình vẽ, chọn \(a = 1,\) ta có \(A\left( {0;0;0} \right),B\left( {0;6;0} \right),E\left( {4;3;0} \right),F\left( {0;3;6} \right).\)

Ta có \(\overrightarrow {AE} = \left( {4;3;0} \right),\overrightarrow {AF} = \left( {0;3;6} \right) \Rightarrow \left[ {\overrightarrow {AE} ,\overrightarrow {AF} } \right] = \left( {18; - 24;12} \right) = 6\left( {3; - 4;2} \right).\)

Mặt phẳng \(\left( {AEF} \right)\) nhận \(\overrightarrow n = \left( {3; - 4;2} \right)\) làm một vectơ pháp tuyến và đi qua \(A\left( {0;0;0} \right)\) có phương trình là: \(3x - 4y + 2z = 0.\)

Vậy \(d\left( {B,\left( {AEF} \right)} \right) = \frac{{\left| {3.0 - 4.6 + 2.0} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2} + {2^2}} }} = \frac{{24\sqrt {29} }}{{29}}.\)

Vì \(a = 1\) nên \(d = \frac{{24\sqrt {29} a}}{{29}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh 6a, tam giác SAB đều và nằm trong mặt phẳng vuông góc  (ảnh 1)

Vẽ đường cao

\(SO\) của tam giác đều \(SAB.\)

Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)

Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)

Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)

Lời giải

Đáp án A.

Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là

\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)

Vậy số giao điểm cần tìm là 1.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP