Câu hỏi:
06/05/2022 273Cho hình tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc \(AB = 6a,AC = 8a,AD = 12a,\) với \(a >0,a \in \mathbb{R}.\) Gọi \(E,F\) tương ứng là trung điểm của hai cạnh \(BC,BD.\) Tính khoảng cách \(d\) từ điểm \(B\) đến mặt phẳng \(\left( {AEF} \right)\) theo \(a.\)
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp ánA.
Cách 1:
Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD \bot \left( {ABC} \right).\)
Gọi \(K\) là trung điểm của \(AB,\) vì \(F\) là trung điểm của \(BD\) suy ra \(FK//AD\) mà \(AD \bot \left( {ABC} \right) \Rightarrow FK \bot \left( {ABC} \right)\) hay \(FK \bot \left( {AKE} \right).\)
Kẻ \(\left\{ \begin{array}{l}KG \bot AE\left( {G \in AE} \right)\\KH \bot FG\left( {H \in GF} \right)\end{array} \right. \Rightarrow d\left( {K,\left( {AEF} \right)} \right) = KH.\) Mặt khác \(BK\) cắt mặt phẳng \(\left( {AEF} \right)\) tại \(A.\)
Suy ra \(\frac{{d\left( {B,\left( {AEF} \right)} \right)}}{{d\left( {K,\left( {AEF} \right)} \right)}} = \frac{{BA}}{{KA}} = 2 \Rightarrow d\left( {B,\left( {AEF} \right)} \right) = 2d\left( {K,\left( {AEF} \right)} \right).\)
Trong tam giác \(AKE\) vuông tại \(K\) và tam giác \(FKG\) vuông tại \(K,\) ta có:
\(\frac{1}{{K{H^2}}} = \frac{1}{{K{F^2}}} + \frac{1}{{K{G^2}}} = \frac{1}{{K{F^2}}} + \frac{1}{{K{A^2}}} + \frac{1}{{K{E^2}}} = \frac{1}{{{{\left( {6a} \right)}^2}}} + \frac{1}{{{{\left( {3a} \right)}^2}}} + \frac{1}{{{{\left( {4a} \right)}^2}}} = \frac{{29}}{{144{a^2}}} \Rightarrow KH = \frac{{12\sqrt {29} a}}{{29}}.\)
Vậy \(d = \frac{{24\sqrt {29} a}}{{29}}.\)
Cách 2: Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD \bot \left( {ABC} \right).\) Chọn hệ trục tọa độ \(Axyz\) như hình vẽ, chọn \(a = 1,\) ta có \(A\left( {0;0;0} \right),B\left( {0;6;0} \right),E\left( {4;3;0} \right),F\left( {0;3;6} \right).\)
Ta có \(\overrightarrow {AE} = \left( {4;3;0} \right),\overrightarrow {AF} = \left( {0;3;6} \right) \Rightarrow \left[ {\overrightarrow {AE} ,\overrightarrow {AF} } \right] = \left( {18; - 24;12} \right) = 6\left( {3; - 4;2} \right).\)
Mặt phẳng \(\left( {AEF} \right)\) nhận \(\overrightarrow n = \left( {3; - 4;2} \right)\) làm một vectơ pháp tuyến và đi qua \(A\left( {0;0;0} \right)\) có phương trình là: \(3x - 4y + 2z = 0.\)
Vậy \(d\left( {B,\left( {AEF} \right)} \right) = \frac{{\left| {3.0 - 4.6 + 2.0} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2} + {2^2}} }} = \frac{{24\sqrt {29} }}{{29}}.\)
Vì \(a = 1\) nên \(d = \frac{{24\sqrt {29} a}}{{29}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng
Câu 2:
Số giao điểm của đồ thị \(y = {x^3} - 2{x^2} + 3x - 2\) và trục hoành là
Câu 4:
Tính giá trị nhỏ nhất của hàm số \(y = x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right).\)
Câu 5:
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng
Câu 6:
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{34}}{{\sqrt {{{\left( {{x^3} - 3x + 2m} \right)}^2}} + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng 2. Tổng tất cả các phần tử của \(S\) bằng
Câu 7:
Cho hàm số \(y = \frac{{5x + 9}}{{x - 1}}\) khẳng định nào sau đây là đúng?
về câu hỏi!