Câu hỏi:
06/05/2022 224Đồ thị hàm số \(\left( C \right):y = \frac{{2x + 1}}{{x + 1}}\) cắt đường thẳng \(d:y = x + m\) tại hai điểm phân biệt \(A,B\) thỏa mãn \(\Delta OAB\) vuông tại \(O\) khi \(m = \frac{a}{b}.\) Biết \(a,b\) là nguyên dương; \(\frac{a}{b}\) tối giản. Tính \(S = a + b.\)
Quảng cáo
Trả lời:
Đáp án A.
Phương trình hoành độ giao điểm của \(\left( C \right)\) và \(d\) là: \(\frac{{2x + 1}}{{x + 1}} = x + m \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ne 0\\2x + 1 = \left( {x + 1} \right)\left( {x + m} \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne - 1\\{x^2} + \left( {m - 1} \right)x + m - 1 = 0\left( 1 \right)\end{array} \right.\)
\(\left( C \right)\) cắt \(d\) tại hai điểm phân biệt \(A,B \Leftrightarrow \left( 1 \right)\) có hai nghiệm phân biệt khác \( - 1{\rm{ }}({x_A},{x_B}\) là nghiệm phương trình \(\left( 1 \right)) \Leftrightarrow \left\{ \begin{array}{l}{\Delta _{\left( 1 \right)}} >0\\{\left( { - 1} \right)^2} + \left( {m - 1} \right)\left( { - 1} \right) + m - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - 4\left( {m - 1} \right) >0\\1 - m + 1 + m - 1 \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 1} \right)\left( {m - 5} \right) >0\\1 \ne 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 1\\m >5\end{array} \right.\)</>
Theo định lí Viet: \({x_A} + {x_B} = 1 - m,{x_A}{x_B} = m - 1\)
\(A\left( {{x_A};{x_A} + m} \right),B\left( {{x_B};{x_B} + m} \right)\)
\(\overrightarrow {OA} = \left( {{x_A};{x_A} + m} \right),\overrightarrow {OB} = \left( {{x_B},{x_B} + m} \right)\)
\(\Delta OAB\) vuông tại \(O \Leftrightarrow \overrightarrow {OA} .\overrightarrow {OB} = 0 \Leftrightarrow {x_A}.{x_B} + \left( {{x_A} + m} \right)\left( {{x_B} + m} \right) = 0\)
\( \Leftrightarrow 2{x_A}{x_B} + m\left( {{x_A} + {x_B}} \right) + {m^2} = 0 \Leftrightarrow 2m - 2 + m\left( {1 - m} \right) + {m^2} = 0 \Leftrightarrow 3m - 2 = 0 \Leftrightarrow m = \frac{2}{3}\) (nhận)
Theo đề bài ta có \(a = 2,b = 3.\) Vậy \(S = 5.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A.

Vẽ đường cao
\(SO\) của tam giác đều \(SAB.\)
Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)
Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)
Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)
Lời giải
Đáp án A.
Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là
\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)
Vậy số giao điểm cần tìm là 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.