Câu hỏi:
06/05/2022 210Đồ thị hàm số \(\left( C \right):y = \frac{{2x + 1}}{{x + 1}}\) cắt đường thẳng \(d:y = x + m\) tại hai điểm phân biệt \(A,B\) thỏa mãn \(\Delta OAB\) vuông tại \(O\) khi \(m = \frac{a}{b}.\) Biết \(a,b\) là nguyên dương; \(\frac{a}{b}\) tối giản. Tính \(S = a + b.\)
Quảng cáo
Trả lời:
Đáp án A.
Phương trình hoành độ giao điểm của \(\left( C \right)\) và \(d\) là: \(\frac{{2x + 1}}{{x + 1}} = x + m \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ne 0\\2x + 1 = \left( {x + 1} \right)\left( {x + m} \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne - 1\\{x^2} + \left( {m - 1} \right)x + m - 1 = 0\left( 1 \right)\end{array} \right.\)
\(\left( C \right)\) cắt \(d\) tại hai điểm phân biệt \(A,B \Leftrightarrow \left( 1 \right)\) có hai nghiệm phân biệt khác \( - 1{\rm{ }}({x_A},{x_B}\) là nghiệm phương trình \(\left( 1 \right)) \Leftrightarrow \left\{ \begin{array}{l}{\Delta _{\left( 1 \right)}} >0\\{\left( { - 1} \right)^2} + \left( {m - 1} \right)\left( { - 1} \right) + m - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - 4\left( {m - 1} \right) >0\\1 - m + 1 + m - 1 \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 1} \right)\left( {m - 5} \right) >0\\1 \ne 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 1\\m >5\end{array} \right.\)</>
Theo định lí Viet: \({x_A} + {x_B} = 1 - m,{x_A}{x_B} = m - 1\)
\(A\left( {{x_A};{x_A} + m} \right),B\left( {{x_B};{x_B} + m} \right)\)
\(\overrightarrow {OA} = \left( {{x_A};{x_A} + m} \right),\overrightarrow {OB} = \left( {{x_B},{x_B} + m} \right)\)
\(\Delta OAB\) vuông tại \(O \Leftrightarrow \overrightarrow {OA} .\overrightarrow {OB} = 0 \Leftrightarrow {x_A}.{x_B} + \left( {{x_A} + m} \right)\left( {{x_B} + m} \right) = 0\)
\( \Leftrightarrow 2{x_A}{x_B} + m\left( {{x_A} + {x_B}} \right) + {m^2} = 0 \Leftrightarrow 2m - 2 + m\left( {1 - m} \right) + {m^2} = 0 \Leftrightarrow 3m - 2 = 0 \Leftrightarrow m = \frac{2}{3}\) (nhận)
Theo đề bài ta có \(a = 2,b = 3.\) Vậy \(S = 5.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 986
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng
Câu 2:
Số giao điểm của đồ thị \(y = {x^3} - 2{x^2} + 3x - 2\) và trục hoành là
Câu 4:
Tính giá trị nhỏ nhất của hàm số \(y = x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right).\)
Câu 5:
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng
Câu 6:
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{34}}{{\sqrt {{{\left( {{x^3} - 3x + 2m} \right)}^2}} + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng 2. Tổng tất cả các phần tử của \(S\) bằng
Câu 7:
Cho hàm số \(y = \frac{{5x + 9}}{{x - 1}}\) khẳng định nào sau đây là đúng?
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận