Câu hỏi:
06/05/2022 140Đồ thị hàm số \(\left( C \right):y = \frac{{2x + 1}}{{x + 1}}\) cắt đường thẳng \(d:y = x + m\) tại hai điểm phân biệt \(A,B\) thỏa mãn \(\Delta OAB\) vuông tại \(O\) khi \(m = \frac{a}{b}.\) Biết \(a,b\) là nguyên dương; \(\frac{a}{b}\) tối giản. Tính \(S = a + b.\)
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
Đáp án A.
Phương trình hoành độ giao điểm của \(\left( C \right)\) và \(d\) là: \(\frac{{2x + 1}}{{x + 1}} = x + m \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ne 0\\2x + 1 = \left( {x + 1} \right)\left( {x + m} \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne - 1\\{x^2} + \left( {m - 1} \right)x + m - 1 = 0\left( 1 \right)\end{array} \right.\)
\(\left( C \right)\) cắt \(d\) tại hai điểm phân biệt \(A,B \Leftrightarrow \left( 1 \right)\) có hai nghiệm phân biệt khác \( - 1{\rm{ }}({x_A},{x_B}\) là nghiệm phương trình \(\left( 1 \right)) \Leftrightarrow \left\{ \begin{array}{l}{\Delta _{\left( 1 \right)}} >0\\{\left( { - 1} \right)^2} + \left( {m - 1} \right)\left( { - 1} \right) + m - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - 4\left( {m - 1} \right) >0\\1 - m + 1 + m - 1 \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 1} \right)\left( {m - 5} \right) >0\\1 \ne 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 1\\m >5\end{array} \right.\)</>
Theo định lí Viet: \({x_A} + {x_B} = 1 - m,{x_A}{x_B} = m - 1\)
\(A\left( {{x_A};{x_A} + m} \right),B\left( {{x_B};{x_B} + m} \right)\)
\(\overrightarrow {OA} = \left( {{x_A};{x_A} + m} \right),\overrightarrow {OB} = \left( {{x_B},{x_B} + m} \right)\)
\(\Delta OAB\) vuông tại \(O \Leftrightarrow \overrightarrow {OA} .\overrightarrow {OB} = 0 \Leftrightarrow {x_A}.{x_B} + \left( {{x_A} + m} \right)\left( {{x_B} + m} \right) = 0\)
\( \Leftrightarrow 2{x_A}{x_B} + m\left( {{x_A} + {x_B}} \right) + {m^2} = 0 \Leftrightarrow 2m - 2 + m\left( {1 - m} \right) + {m^2} = 0 \Leftrightarrow 3m - 2 = 0 \Leftrightarrow m = \frac{2}{3}\) (nhận)
Theo đề bài ta có \(a = 2,b = 3.\) Vậy \(S = 5.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng
Câu 2:
Số giao điểm của đồ thị \(y = {x^3} - 2{x^2} + 3x - 2\) và trục hoành là
Câu 4:
Tính giá trị nhỏ nhất của hàm số \(y = x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right).\)
Câu 5:
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng
Câu 6:
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{34}}{{\sqrt {{{\left( {{x^3} - 3x + 2m} \right)}^2}} + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng 2. Tổng tất cả các phần tử của \(S\) bằng
Câu 7:
Cho hàm số \(y = \frac{{5x + 9}}{{x - 1}}\) khẳng định nào sau đây là đúng?
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
44 bài tập Đạo hàm và khảo sát hàm số có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 23)
về câu hỏi!