Câu hỏi:
06/05/2022 843Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = 3{\cos ^4}x + \frac{3}{2}{\sin ^2}x + m\cos x - \frac{5}{2}\) đồng biến trên \(\left( {\frac{3}{2};\frac{{2\pi }}{3}} \right].\)
Quảng cáo
Trả lời:
Đáp án A.
\(y = 3{\cos ^4}x + \frac{3}{2}{\sin ^2}x + m\cos x - \frac{5}{2} \Leftrightarrow y = 3{\cos ^4}x - \frac{3}{2}{\cos ^2}x + m\cos x - 1\)
Đặt \(t = \cos x.\) Vì \(x \in \left( {\frac{\pi }{3};\frac{{2\pi }}{3}} \right]\) nên \(t \in \left[ { - \frac{1}{2};\frac{1}{2}} \right).\)
Hàm số trở thành \(f\left( t \right) = 3{t^4} - \frac{3}{2}{t^2} + mt - 1,f'\left( t \right) = 12{t^3} - 3t + m\)
Yêu cầu bài toán \( \Leftrightarrow f\left( t \right)\) nghịch biến trên \(\left[ { - \frac{1}{2};\frac{1}{2}} \right) \Leftrightarrow f'\left( t \right) \le 0,\forall t \in \left[ { - \frac{1}{2};\frac{1}{2}} \right)(f'\left( t \right) = 0\) chỉ tại một số điểm) \( \Leftrightarrow 12{t^3} - 3t + m \le 0{\rm{ }}\forall t \in \left[ { - \frac{1}{2};\frac{1}{2}} \right) \Leftrightarrow m \le - 12{t^3} + 3t{\rm{ }}\forall t \in \left[ { - \frac{1}{2};\frac{1}{2}} \right)\)
Đặt \(g\left( t \right) = - 12{t^3} + 3t,g'\left( t \right) = - 36{t^2} + 3,g'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = \frac{{\sqrt 3 }}{6} \in \left[ { - \frac{1}{2};\frac{1}{2}} \right)\\t = - \frac{{\sqrt 3 }}{6} \in \left[ { - \frac{1}{2};\frac{1}{2}} \right)\end{array} \right.\)
Ta có

Dựa vào bảng biến thiên \(m \le - \frac{{\sqrt 3 }}{3}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A.

Vẽ đường cao
\(SO\) của tam giác đều \(SAB.\)
Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)
Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)
Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)
Lời giải
Đáp án A.
Phương trình hoành độ giao điểm của \(y = {x^3} - 2{x^2} + 3x - 2\) với trục hoành là
\({x^3} - 2{x^2} + 3x - 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x + 2} \right) = 0 \Leftrightarrow x = 1\) (do \({x^2} - x + 2 >0,\forall x \in \mathbb{R}).\)
Vậy số giao điểm cần tìm là 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.