Câu hỏi:

06/05/2022 2,016

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Biết rằng hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ

Cho hàm số y = f(x) xác định trên R. Biết rằng hàm số y=f'(x) có đồ thị như hình vẽ Số điểm cực trị của hàm số  (ảnh 1)

 Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^2} - 2x} \right) - \left( {\frac{{{x^4}}}{2} - 2{x^3} + {x^2} + 2x + 1} \right)\) là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Set \ (t = {x ^ 2} - 2x \) (with \ (t \ ge - 1), \) phương trình (*) trở thành: \ (f '\ left (t \ right) - \ left ( {t - 1} \ right) = 0 \ Leftrightarrow f '\ left (t \ right) = t - 1 \ left (1 \ right) \)

Cho hàm số y = f(x) xác định trên R. Biết rằng hàm số y=f'(x) có đồ thị như hình vẽ Số điểm cực trị của hàm số  (ảnh 2)

Đồ dùng vào đồ thị hàm số \ (y = f '\ left (x \ right) \) và đồ thị đường thẳng \ (\ left (d \ right): y = x - 1 \)

\ (\ Rightarrow \) File method \ (\ left (1 \ right) \) là \ (\ left \ {{- 1; 1; 2; 3} \ right \} \)

* \ (t = - 1 \ Rightarrow {x ^ 2} - 2x = - 1 \ Leftrightarrow {\ left ({x - 1} \ right) ^ 2} = 0 \ Leftrightarrow x - 1 = 0 \ Leftrightarrow x = 1 \)

* \ (t = 1 \ Rightarrow {x ^ 2} - 2x = 1 \ Leftrightarrow {\ left ({x - 1} \ right) ^ 2} = 2 \ Leftrightarrow x - 1 = \ pm \ sqrt 2 \ Leftrightarrow x = \ pm \ sqrt 2 + 1 \)

* \ (t = 2 \ Rightarrow {x ^ 2} - 2x = 2 \ Leftrightarrow {\ left ({x - 1} \ right) ^ 2} = 3 \ Leftrightarrow x - 1 = \ pm \ sqrt 3 \ Leftrightarrow x = \ pm \ sqrt 3 + 1 \)

* \ (t = 3 \ Rightarrow {x ^ 2} - 2x = 3 \ Leftrightarrow {\ left ({x - 1} \ right) ^ 2} = 4 \ Leftrightarrow x - 1 = \ pm 2 \ Leftrightarrow \ left [ \ begin {array} {l} x = - 1 \\ x = 3 \ end {array} \ right. \)

\ (\ Rightarrow \) Phương trình \ (g '\ left (x \ right) = 0 \) có 6 nghiệm đơn là \ (x = - 1; x = \ pm \ sqrt 2 + 1; x = \ pm \ sqrt 3 + 1; x = 3 \) và có 1 sqrt bội là \ (x = 1. \)

'Number function \ (g \ left (x \ right) = f \ left ({{x ^ 2} - 2x} \ right) - \ left ({\ frac {{{x ^ 4}}} {2} - 2 {x ^ 3} + {x ^ 2} + 2x + 1} \ right) \) có 7 điểm cực trị.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng

Xem đáp án » 06/05/2022 26,348

Câu 2:

Số giao điểm của đồ thị \(y = {x^3} - 2{x^2} + 3x - 2\) và trục hoành là

Xem đáp án » 06/05/2022 12,047

Câu 3:

Tập xác định của hàm số \(y = {x^{\sqrt 3 }}\) là 

Xem đáp án » 06/05/2022 9,068

Câu 4:

Tính giá trị nhỏ nhất của hàm số \(y = x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right).\)

Xem đáp án » 06/05/2022 7,447

Câu 5:

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng

Cho hàm số f(x) có đạo hàm trên R là hàm số f'(x). Biết đồ thị hàm số f'(x) được cho như hình vẽ. Hàm số f(x) nghịch biến  (ảnh 1)

Xem đáp án » 06/05/2022 5,132

Câu 6:

Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{34}}{{\sqrt {{{\left( {{x^3} - 3x + 2m} \right)}^2}} + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng 2. Tổng tất cả các phần tử của \(S\) bằng  

Xem đáp án » 06/05/2022 5,071

Câu 7:

Cho hàm số \(y = \frac{{5x + 9}}{{x - 1}}\) khẳng định nào sau đây là đúng?

Xem đáp án » 06/05/2022 4,284