Câu hỏi:
15/01/2020 7,259Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm đối xứng của B qua C,D và M là trung điểm của đoạn thẳng AB. Gọi (T) là thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MEF). Tính diện tích S của thiết diện (T)
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Đáp án D
Vẽ AO (BCD, MH (BCD). Gọi K là trung điểm EF, ta có (ABK) (BCD), mp (ABK) chứa AO, MH và là mặt phẳng trung trực của đoạn CD và EF.
Gọi J là trung điểm CD; G là giao điểm của MK và AJ; I là giao điểm của MK và AO.
Gọi N, P lần lượt là giao điểm của ME với AC, MF với AD. Khi đó (MNP) chính là thiết diện khi cắt tứ diện đều ABCD bởi mp (MEF). Vì BE=BF=2a nên ta cũng có MN=MP, hay tam giác MNP cân tại M, đường cao MG.
Để tính diện tích MNP, ta cần đi tìm MG và NP.
Vì G là giao điểm của các đường trung tuyến AJ và MK trong tam giác ABK nên G là trọng tâm của tam giác ABK, do đó MG = MK (1) và AG = AJ hay NP = CD = (vì NP//CD//EF và chứng minh dựa vào các tam giác đồng dạng, tính chất tỉ số đồng dạng và các đường cao; đường cao AG, AJ trong tam giác ANP và ACD).
Áp dụng nhanh: tam giác đều cạnh a có độ dài mỗi đường cao là (và diện tích là ).
Tam giác đều BCD cạnh a có đường cao BJ = , trọng tâm O, suy ra BO = BJ = . Lại vì MH là đường trung bình trong tam giác vuông ABO nên
Vì tam giác MHK vuông tại H nên ta có
Quay lại (1), ta có
từ đó tính được diện tích tam giác MNP là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA vuông góc với mặt phẳng (ABCD). Trong các khẳng định sau, khẳng định nào sai?
Câu 4:
Cho tứ diện ABCD có AB = CD = 2a. Gọi M, N lần lượt là trung điểm của BC, AD và MN = a. Tính góc tạo bởi hai đường thẳng AB và CD
Câu 5:
Cho tứ diện đều ABCD cạnh bằng a. Diện tích xung quanh Sxq của hình trụ có đáy là đường tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện ABCD là
Câu 6:
Cho ba hình cầu tiếp xúc ngoài với nhau từng đôi một và cùng tiếp xúc với một mặt phẳng. Các tiếp điểm của các hình cầu trên mặt phẳng lập thành một tam giác có các cạnh lần lượt là 4; 2 và 3. Tính tổng bán kính của ba hình cầu trên.
Câu 7:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Xét tứ diện AB’CD’. Cắt tứ diện đó bằng mặt phẳng đi qua tâm của hình lập phương và song song với mặt phẳng (ABC). Tính diện tích của thiết diện thu được.
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
về câu hỏi!