Câu hỏi:

02/05/2022 228

Diện tích phần hình gạch chéo tronng hình vẽ bên được tính theo công thức nào dưới đây? 

Diện tích phần hình gạch chéo tronng hình vẽ bên được tính theo (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=fx,y=gx, đường thẳng x = a, x = b là S=abfxgxdx.

Cách giải:

Dựa vào đồ thị hàm số ta thấy: x22x1=x2+3x=1x=2.

Diện tích phần hình phẳng gạch chéo là:

                                         S=12x2+3x22x1dx=122x2+2x+4dx

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp:

Áp dụng công thức tính tổ hợp.

Cách giải:

Số tập con có 3 phần tử của tập hợp 7 phần tử là C73.

Chọn D.

Câu 2

Lời giải

Phương pháp:

Lập bảng biến thiên của hàm số y = f(x) và y = g(x).

Cách giải:

Dựa vào đồ thị hàm số ta có bảng biến thiên của y = f(x) như sau:

Cho hàm số bậc ba y = f(x) có đồ thị của hàm số f'(x) như hình vẽ và f(b) = 1 (ảnh 2)

Đặt hx=f2x+4fx ta có: h'x=2f'x.fx+4f'x

h'x=02f'xfx+2=0

f'x=0x=ax=bfx=2x=c<a

 

 Hàm số y = h(x) có 3 điểm cực trị  Hàm số y = h(x) + m cũng có 3 điểm cực trị.

Vì số điểm cực trị của hàm số gx=hx+m bằng tổng số điểm cực trị của hàm số y = h(x) + m và số giao điểm của đồ thị hàm số y = h(x) + m với trục hoành (không tính tiếp xúc).

Nên để hàm số gx=hx+m có 5 điểm cực trị thì phương trình h(x) = 0 có 2 nghiệm phân biệt (không tính nghiệm kép).

Bảng biến thiên hàm số h(x) như sau:

Cho hàm số bậc ba y = f(x) có đồ thị của hàm số f'(x) như hình vẽ và f(b) = 1 (ảnh 3)

hb=g2b+4fb=1+4=5,hc=f2c+4fc, với hc<1hc4.

Nếu h(c) > 5 thì phương trình h(x) = -m có 2 nghiệm phân biệt (không tính nghiệm kép)

5<m<hcm<5 (không thỏa mãn m5;5).

Nếu hc5 thì phương trình h(x) = -m có 2 nghiệm phân biệt (không tính nghiệm kép)

hc<m55mhc4 (thỏa mãn m5;5).

Mà mm5;4;3;2;1;0;1;2;3;4.

Vậy có 10 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP