Câu hỏi:

02/05/2022 196

Cho phương trình log32x4log3x+m3=0. Tìm tất cả các giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt x1<x2 thỏa mãn x281x1<0. 

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Tìm điều kiện xác định của phương trình.

- Đặt ẩn phụ log3x=t để phương trình đã cho về phương trình bậc hai ẩn t

- Từ điều kiện x1<x2 thỏa mãn x281x1<0 suy ra điều kiện của

- Áp dụng định lí Vi-ét cho phương trình bậc hai.

Cách giải:

ĐKXĐ: x > 0

Đặt log3x=t, phương trình đã cho trở thành: t24t+m3=0*

Để phương trình đã cho có 2 nghiệm phân biệt x1<x2 thì phương trình (*) có 2 nghiệm phân biệt t1<t2.

Suy ra Δ'=4m3=7m>0m<7 **.

Khi đó áp dụng Vi-et ta có t1+t2=4t1.t2=m3

Vì log3x1=t1log3x2=t2x1=3t1x2=3t2.

Theo bài ra ta có:

     x281x1<03t281.3t1<0

3t2<3t1+4t2<t1+4t2t1<4

t2t12<16 (do t2t1>0)

t2+t124t1t2<16

164m3<16

164m+12<0m>3

Kết hợp điều kiện (**) và điều kiện đề bài ta có 3<m<7mm4;5;6.

Vậy có 3 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập hợp T gồm 7 phần tử khác nhau. Số tập con có 3 phần tử của tập hợp T 

Xem đáp án » 26/04/2022 3,110

Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị của hàm số f'(x) như hình vẽ và f(b) = 1. Số giá trị nguyên của m5;5 để hàm số gx=f2x+4fx+m có đúng 5 điểm cực trị là:

Cho hàm số bậc ba y = f(x) có đồ thị của hàm số f'(x) như hình vẽ và f(b) = 1 (ảnh 1)

Xem đáp án » 03/05/2022 2,484

Câu 3:

Cho các số thực a, b, c thỏa mãn a22+b22+c22=8 2a=7b=14c. Tổng 2a+b+c bằng: 

Xem đáp án » 02/05/2022 2,324

Câu 4:

Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình x4+16x4+4x2+4x212x2xm=0 có nghiệm thuộc [1; 2]?                       

Xem đáp án » 02/05/2022 2,055

Câu 5:

Cho số phức z = 2 + i. Tính |z|.

Xem đáp án » 02/05/2022 1,332

Câu 6:

Tìm tất cả các giá trị thực của tham số m để hàm số y=e2x+mme2x+1 đồng biến trên khoảng ln2;+.

Xem đáp án » 02/05/2022 1,266

Câu 7:

Cho các số dương x, y thỏa mãn 2x3y+1=2x+y2x3+4x+4. Tìm giá trị nhỏ nhất của biểu thức P=7y+x37.

Xem đáp án » 02/05/2022 638
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua