Câu hỏi:

06/05/2022 384

Với x>a>0  a là tham số, đặt fx=0xtln3tdt . Hàm số f(x)  đồng biến trên khoảng nào trong các khoảng sau đây?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử F(t) là một nguyên hàm của tln3t, ta có F't=tln3t.

Khi đó fx=FxFaf'x=F'x=xln3x>0lnx>0x>1

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho x, y (x1 ) là hai số thực dương thỏa mãn logxy=2y5,log53x=15y . Giá trị của biểu thức P=y2+x2  

Xem đáp án » 06/05/2022 24,648

Câu 2:

Trong không gian với hệ tọa độ Oxyz, gọi α  là mặt phẳng chứa đường thẳng d:x21=y31=z2  và vuông góc với mặt phẳng β:x+y2z+1=0 . Giao tuyến của α  và β   đi qua điểm nào dưới đây?

Xem đáp án » 07/05/2022 9,725

Câu 3:

Cho số phức z thỏa mãn |z|=2  . Tập hợp điểm biểu diễn số phức w=1iz¯+2i   

Xem đáp án » 06/05/2022 8,096

Câu 4:

Tập nghiệm của bất phương trình log3x2+23  

Xem đáp án » 06/05/2022 4,890

Câu 5:

Cho hàm số y=fx  có bảng biến thiên như hình vẽ sau.

Cho hàm số  y=f(x) có bảng biến thiên như hình vẽ sau.   Mệnh đề nào sau đây đúng? (ảnh 1)

Mệnh đề nào sau đây đúng?

Xem đáp án » 06/05/2022 2,364

Câu 6:

Cho hàm số y=fx=ax3+bx2+cx+d  có bảng biến thiên như sau.

Cho hàm số y=f(x): ax^3+bx^2+cx+d  có bảng biến thiên như sau.    (ảnh 1)

Tìm m để phương trình fx=m  có bốn nghiệm phân biệt x1<x2<x3<12<x4 .

Xem đáp án » 07/05/2022 2,319

Câu 7:

Tập nghiệm S của phương trình 22x+15.2x+2=0  

Xem đáp án » 06/05/2022 2,021
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua