Câu hỏi:

06/05/2022 128

Cho hàm số f(x) có bảng biến thiên như sau.

Cho hàm số  f(x) có bảng biến thiên như sau.   Khẳng định nào sau đây là đúng? (ảnh 1)

Khẳng định nào sau đây là đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Dựa vào bảng biến thiên ta thấy giá trị cực đại của hàm số bằng 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho x, y (x1 ) là hai số thực dương thỏa mãn logxy=2y5,log53x=15y . Giá trị của biểu thức P=y2+x2  

Xem đáp án » 06/05/2022 16,777

Câu 2:

Cho số phức z thỏa mãn |z|=2  . Tập hợp điểm biểu diễn số phức w=1iz¯+2i   

Xem đáp án » 06/05/2022 7,965

Câu 3:

Trong không gian với hệ tọa độ Oxyz, gọi α  là mặt phẳng chứa đường thẳng d:x21=y31=z2  và vuông góc với mặt phẳng β:x+y2z+1=0 . Giao tuyến của α  và β   đi qua điểm nào dưới đây?

Xem đáp án » 07/05/2022 4,298

Câu 4:

Tập nghiệm của bất phương trình log3x2+23  

Xem đáp án » 06/05/2022 3,059

Câu 5:

Trong một lớp học có 35 học sinh. Muốn chọn ra một lớp trưởng, một lớp phó thì số cách chọn là

Xem đáp án » 07/05/2022 1,630

Câu 6:

Cho hàm số y=fx  có bảng biến thiên như hình vẽ sau.

Cho hàm số  y=f(x) có bảng biến thiên như hình vẽ sau.   Mệnh đề nào sau đây đúng? (ảnh 1)

Mệnh đề nào sau đây đúng?

Xem đáp án » 06/05/2022 1,363

Câu 7:

Cho hàm số y=fx=ax3+bx2+cx+d  có bảng biến thiên như sau.

Cho hàm số y=f(x): ax^3+bx^2+cx+d  có bảng biến thiên như sau.    (ảnh 1)

Tìm m để phương trình fx=m  có bốn nghiệm phân biệt x1<x2<x3<12<x4 .

Xem đáp án » 07/05/2022 1,247

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store