Câu hỏi:

30/12/2019 9,299 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao AH vuông góc với (ABCD). Gọi  là góc giữa BD và (SAD). Tính sin α

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Gọi N là trung điểm AD suy ra HN // BD.

Góc giữa BD và    (SAD) bằng góc giữa HN và (SAD).

Ta có ADSH, ADAB suy ra AD (SAB) .  Trong mặt phẳng (SAB) kẻ HKSA nên ta suy ra ADHK và HK   (SAD) . vậy góc giữa HN và (SAD) là góc HNK.

Gọi cạnh của hình vuông là a

Ta tính được HN = a22Xét tam giác vuông SHA vuông tại H ta có 

Xét tam giác vuông HNK vuông tại K ta có 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

B sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.

D sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ta chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.

C sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì không tạo được mặt phẳng nào đi qua cả 4 điểm.

Lời giải

Đáp án C

Kẻ AH BD

Khi đó  

  nên góc giữa (SBD) và (ABCD) là SHA=α.

Suy ra 

Do đó 

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP