Câu hỏi:

10/05/2022 3,241 Lưu

Cho hàm số \(y = f(x)\) có bảng biến thiên như sau

Cho hàm số y = f(x) có bảng biến thiên như sau Khẳng định nào sau đây đúng? (ảnh 1)

Khẳng định nào sau đây đúng?

A. Điểm cực tiểu của hàm số là 0.

B. Điểm cực tiểu của đồ thị hàm số là 1.

C. Điểm cực tiểu của hàm số là – 1.

D. Điểm cực đại của hàm số là 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nhìn vào bảng biến thiên ta có điểm cực tiểu của hàm số là -1.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C.

Dựa vào xu hướng của đồ thị hàm số ta có \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)

Tại \(x = 0 \Rightarrow y = d < 0\)

\(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)

Xét thấy 2 điểm cực trị \({x_1} < 0\) và \({x_2} >0.\)</>

Ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2b}}{{3a}} >0 \Rightarrow b >0\\{x_1}{x_2} = \frac{c}{{3a}} < 0 \Rightarrow c >0\end{array} \right.\)</>

Vậy có 2 giá trị dương trong 4 giá trị \(a,b,c,d.\)

Lời giải

Tập xác định \(D = \mathbb{R}\backslash \left\{ {\frac{m}{2}} \right\}.\)

Ta có \(y' = \frac{{{m^2} - 4}}{{{{\left( { - 2x + m} \right)}^2}}}.\)

Để hàm số nghịch biến trên \(\left( {\frac{1}{2}; + \infty } \right)\) thì \(\left\{ \begin{array}{l}{m^2} - 4 < 0\\\frac{m}{2} \notin \left( {\frac{1}{2}; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \in \left( { - 2;2} \right)\\m \le 1\end{array} \right. \Leftrightarrow m \in \left( { - 2;1} \right].\)

Suy ra có các số nguyên thỏa mãn là \(\left\{ { - 1;0;1} \right\}.\)

Đáp án C

Câu 3

A. \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 1.\)

B. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 2.\]

C. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 3.\]

D. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = - 1.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP