Câu hỏi:

10/05/2022 1,438 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số y=f(x) có bảng biến thiên như sau: Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là (ảnh 1)

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

A. 1.

B. 3.

C. 2.

D. 4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 5\) nên đồ thị hàm số có tiệm cận ngang là \(y = 5.\)

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = - \infty \) nên đồ thị hàm số có tiệm cận đứng là \(x = 1.\)

Vậy đồ thị hàm số có tổng số đường tiệm cận ngang và đứng là 2.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C.

Dựa vào xu hướng của đồ thị hàm số ta có \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)

Tại \(x = 0 \Rightarrow y = d < 0\)

\(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)

Xét thấy 2 điểm cực trị \({x_1} < 0\) và \({x_2} >0.\)</>

Ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2b}}{{3a}} >0 \Rightarrow b >0\\{x_1}{x_2} = \frac{c}{{3a}} < 0 \Rightarrow c >0\end{array} \right.\)</>

Vậy có 2 giá trị dương trong 4 giá trị \(a,b,c,d.\)

Câu 2

A. \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 1.\)

B. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 2.\]

C. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 3.\]

D. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = - 1.\]

Lời giải

Ta có \(f'\left( x \right) = 3{x^2} - 3 = 0 \Rightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)

BBT

Cho hàm số f(x) = x^3 - 3x +m ( với m là tham số thực). Biết max(f(x)) = 5 . Giá trị nhỏ nhất của hàm số y = f(x) trên (ảnh 1)

Vậy \(\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = f\left( { - 1} \right) \Rightarrow f\left( { - 1} \right) = 5 \Leftrightarrow m + 2 = 5 \Leftrightarrow m = 3.\)

\(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = m - 2 = 3 - 2 = 1.\)

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP