Câu hỏi:

11/05/2022 497

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC = 2a\) biết rằng \(\left( {A'BC} \right)\) hợp với đáy \(\left( {ABC} \right)\) một góc \({45^0}\).Thể tích khối lăng trụ\(ABC.A'B'C'\)bằng

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC = 2a biết rằng (A'BC) hợp với đáy (ABC) (ảnh 1)

Tam giác \(ABC\) là tam giác vuông cân tại \(B.\) Gọi \(BA = BC = b.\)

Áp dụng định lí Pitago vào trong tam giác vuông \(ABC\) ta có \(\sqrt {B{A^2} + B{C^2}} = AC \Leftrightarrow b\sqrt 2 = 2a \Leftrightarrow b = a\sqrt 2 .\)

Diện tích đáy là \({S_{ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}{b^2} = \frac{1}{2}{\left( {a\sqrt 2 } \right)^2} = {a^2}.\)

Ta có \(\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\BC \bot \left( {AA'B} \right)\\\left( {AA'B} \right) \cap \left( {ABC} \right) = AB\\\left( {AA'B} \right) \cap \left( {A'BC} \right) = A'B\end{array} \right..\) Do đó góc giữa \(\left( {A'BC} \right)\) và đáy \(\left( {ABC} \right)\) bằng góc giữa \(AB\) và \(A'B\) và bằng góc \(\widehat {ABA'},\) theo giả thiết, ta có \(\widehat {ABA'} = {45^0}.\)

Tam giác \(AA'B\) vuông cân tại \(A\) nên \(AA' = AB = a\sqrt 2 .\)

Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(V = AA'.{S_{ABC}} = a\sqrt 2 .{a^2} = {a^3}\sqrt 2 .\)

Đáp án D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên. Trong các giá trị \(a\), \(b\), \(c\), \(d\) có bao nhiêu giá trị dương?
Cho hàm số y = ax^3 + bx^2 + cx + d có đồ thị như hình bên. Trong các giá trị a, b, c, d có bao nhiêu giá trị dương? (ảnh 1)

Xem đáp án » 11/05/2022 27,439

Câu 2:

Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là

Xem đáp án » 11/05/2022 15,209

Câu 3:

Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 10/05/2022 12,436

Câu 4:

Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là

Xem đáp án » 11/05/2022 12,018

Câu 5:

Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là

Hàm số f(x) = ax^4 + bx^3 + cx^2 + dx + e có đồ thị như hình dưới đây. Số nghiệm của phương trình f(f(x)) + 1 = 0 là (ảnh 1)

Xem đáp án » 11/05/2022 7,728

Câu 6:

Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số \(g(x) = f({x^3} + f(x))\) là

Cho hàm số y = f(x) = ax^4 + bx^2 + c có đồ thị như hình vẽ bên dưới  Số điểm cực trị của hàm số g(x) = f(x^3 + f(x)) là (ảnh 1)

Xem đáp án » 11/05/2022 6,809

Câu 7:

Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y = f'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m \in \left( { - 10\,;\,10} \right)\) để hàm số \(y = f\left( {3x - 1} \right) + {x^3} - 3mx\) đồng biến trên khoảng \(\left( { - 2\,;\,1} \right)\)?

Cho hàm số f(x) có bảng biến thiên của hàm số y=f'(x) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số  (ảnh 1)

Xem đáp án » 11/05/2022 5,961