Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC = 2a\) biết rằng \(\left( {A'BC} \right)\) hợp với đáy \(\left( {ABC} \right)\) một góc \({45^0}\).Thể tích khối lăng trụ\(ABC.A'B'C'\)bằng
A. \[\frac{{{a^3}\sqrt 2 }}{2}\]
B. \[\frac{{{a^3}\sqrt 3 }}{3}\]
C. \[{a^3}\sqrt 3 \]
D. \[{a^3}\sqrt 2 \]
Quảng cáo
Trả lời:

Tam giác \(ABC\) là tam giác vuông cân tại \(B.\) Gọi \(BA = BC = b.\)
Áp dụng định lí Pitago vào trong tam giác vuông \(ABC\) ta có \(\sqrt {B{A^2} + B{C^2}} = AC \Leftrightarrow b\sqrt 2 = 2a \Leftrightarrow b = a\sqrt 2 .\)
Diện tích đáy là \({S_{ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}{b^2} = \frac{1}{2}{\left( {a\sqrt 2 } \right)^2} = {a^2}.\)
Ta có \(\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\BC \bot \left( {AA'B} \right)\\\left( {AA'B} \right) \cap \left( {ABC} \right) = AB\\\left( {AA'B} \right) \cap \left( {A'BC} \right) = A'B\end{array} \right..\) Do đó góc giữa \(\left( {A'BC} \right)\) và đáy \(\left( {ABC} \right)\) bằng góc giữa \(AB\) và \(A'B\) và bằng góc \(\widehat {ABA'},\) theo giả thiết, ta có \(\widehat {ABA'} = {45^0}.\)
Tam giác \(AA'B\) vuông cân tại \(A\) nên \(AA' = AB = a\sqrt 2 .\)
Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(V = AA'.{S_{ABC}} = a\sqrt 2 .{a^2} = {a^3}\sqrt 2 .\)
Đáp án D
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C.
Dựa vào xu hướng của đồ thị hàm số ta có \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)
Tại \(x = 0 \Rightarrow y = d < 0\)
\(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)
Xét thấy 2 điểm cực trị \({x_1} < 0\) và \({x_2} >0.\)</>
Ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2b}}{{3a}} >0 \Rightarrow b >0\\{x_1}{x_2} = \frac{c}{{3a}} < 0 \Rightarrow c >0\end{array} \right.\)</>
Vậy có 2 giá trị dương trong 4 giá trị \(a,b,c,d.\)
Câu 2
A. \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 1.\)
B. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 2.\]
C. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 3.\]
D. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = - 1.\]
Lời giải
Ta có \(f'\left( x \right) = 3{x^2} - 3 = 0 \Rightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)
BBT

Vậy \(\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = f\left( { - 1} \right) \Rightarrow f\left( { - 1} \right) = 5 \Leftrightarrow m + 2 = 5 \Leftrightarrow m = 3.\)
\(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = m - 2 = 3 - 2 = 1.\)
Đáp án A
Câu 3
A. \(4\).
B. \(3\).
C. \(5\).
D. \(2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[0 < m \le 2\].
B. \[m \le 0\].
C. \[m >4\].
D. \[2 < m \le 4\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \( - 49\).
B. \( - 39\).
C. \( - 35\).
D. \(35\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



