Câu hỏi:
11/05/2022 307Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,\)mặt bên \(SAB\) nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right),{\rm{ }}\widehat {SAB} = {60^0},{\rm{ }}SA = 2a.\) Thể tích \(V\) của khối chóp \(S.ABCD\)là
Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).
Quảng cáo
Trả lời:
Áp dụng Định lí cosin cho tam giác \(SAB,\) ta có \(S{B^2} = A{B^2} + S{A^2} - 2AB.SA.\cos {60^0} = 3{a^2}\)
Tam giác \(SAB\) thỏa mãn \(S{B^2} + A{B^2} = S{A^2}\) nên tam giác \(SAB\) vuông tại \(B.\)
Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SB \subset \left( {SAB} \right),SB \bot AB\end{array} \right. \Rightarrow SB \bot \left( {ABCD} \right).\)
Vậy \(V = {V_{S.ABCD}} = \frac{1}{3}SB.{S_{ABCD}} = \frac{1}{3}a\sqrt 3 .{a^2} = \frac{{{a^3}\sqrt 3 }}{3}\) (đvtt).
Đáp án A
Đã bán 386
Đã bán 1,3k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là
Câu 3:
Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?
Câu 4:
Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là
Câu 5:
Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là
Câu 6:
Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số \(g(x) = f({x^3} + f(x))\) là
Câu 7:
Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y = f'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m \in \left( { - 10\,;\,10} \right)\) để hàm số \(y = f\left( {3x - 1} \right) + {x^3} - 3mx\) đồng biến trên khoảng \(\left( { - 2\,;\,1} \right)\)?
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
50 bài tập Hình học không gian có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận