Câu hỏi:
11/05/2022 375Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,\)mặt bên \(SAB\) nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right),{\rm{ }}\widehat {SAB} = {60^0},{\rm{ }}SA = 2a.\) Thể tích \(V\) của khối chóp \(S.ABCD\)là
Quảng cáo
Trả lời:
Áp dụng Định lí cosin cho tam giác \(SAB,\) ta có \(S{B^2} = A{B^2} + S{A^2} - 2AB.SA.\cos {60^0} = 3{a^2}\)
Tam giác \(SAB\) thỏa mãn \(S{B^2} + A{B^2} = S{A^2}\) nên tam giác \(SAB\) vuông tại \(B.\)
Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SB \subset \left( {SAB} \right),SB \bot AB\end{array} \right. \Rightarrow SB \bot \left( {ABCD} \right).\)
Vậy \(V = {V_{S.ABCD}} = \frac{1}{3}SB.{S_{ABCD}} = \frac{1}{3}a\sqrt 3 .{a^2} = \frac{{{a^3}\sqrt 3 }}{3}\) (đvtt).
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C.
Dựa vào xu hướng của đồ thị hàm số ta có \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)
Tại \(x = 0 \Rightarrow y = d < 0\)
\(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)
Xét thấy 2 điểm cực trị \({x_1} < 0\) và \({x_2} >0.\)</>
Ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2b}}{{3a}} >0 \Rightarrow b >0\\{x_1}{x_2} = \frac{c}{{3a}} < 0 \Rightarrow c >0\end{array} \right.\)</>
Vậy có 2 giá trị dương trong 4 giá trị \(a,b,c,d.\)
Lời giải
Tập xác định \(D = \mathbb{R}\backslash \left\{ {\frac{m}{2}} \right\}.\)
Ta có \(y' = \frac{{{m^2} - 4}}{{{{\left( { - 2x + m} \right)}^2}}}.\)
Để hàm số nghịch biến trên \(\left( {\frac{1}{2}; + \infty } \right)\) thì \(\left\{ \begin{array}{l}{m^2} - 4 < 0\\\frac{m}{2} \notin \left( {\frac{1}{2}; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \in \left( { - 2;2} \right)\\m \le 1\end{array} \right. \Leftrightarrow m \in \left( { - 2;1} \right].\)
Suy ra có các số nguyên thỏa mãn là \(\left\{ { - 1;0;1} \right\}.\)
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.