Câu hỏi:

11/05/2022 3,119

Ông A dự định sử dụng hết \(8{\rm{ }}{m^2}\)kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng ( các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (làm tròn đến hàng phần trăm)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi chiều rộng, chiều cao của bể cá lần lượt là \(x,h\left( {x;h >0} \right).\) Khi đó chiều dài là \(2x.\)

Tổng diện tích các mặt không kể nắp là \(2{x^2} + 4xh + 2xh = 8 \Leftrightarrow h = \frac{{4 - {x^2}}}{{3x}}.\) Vì \(x,h >0\) nên \(x \in \left( {0;2} \right).\)

Thể tích của bể cá là \(V = 2x.x.h = \frac{{8x - 2{x^3}}}{3}.\)

Ta có \(V' = \frac{8}{3} - 2{x^2},\) cho \(V' = 0 \Leftrightarrow \frac{8}{3} - 2{x^2} = 0 \Rightarrow x = \frac{{2\sqrt 3 }}{3}.\)

Bảng biến thiên

Ông A dự định sử dụng hết 8 m^2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (ảnh 1)

Bể các có dung tích lớn nhất bằng \(\frac{{32\sqrt 3 }}{{27}} \approx 2,05.\)

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C.

Dựa vào xu hướng của đồ thị hàm số ta có \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)

Tại \(x = 0 \Rightarrow y = d < 0\)

\(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)

Xét thấy 2 điểm cực trị \({x_1} < 0\) và \({x_2} >0.\)</>

Ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2b}}{{3a}} >0 \Rightarrow b >0\\{x_1}{x_2} = \frac{c}{{3a}} < 0 \Rightarrow c >0\end{array} \right.\)</>

Vậy có 2 giá trị dương trong 4 giá trị \(a,b,c,d.\)

Lời giải

Tập xác định \(D = \mathbb{R}\backslash \left\{ {\frac{m}{2}} \right\}.\)

Ta có \(y' = \frac{{{m^2} - 4}}{{{{\left( { - 2x + m} \right)}^2}}}.\)

Để hàm số nghịch biến trên \(\left( {\frac{1}{2}; + \infty } \right)\) thì \(\left\{ \begin{array}{l}{m^2} - 4 < 0\\\frac{m}{2} \notin \left( {\frac{1}{2}; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \in \left( { - 2;2} \right)\\m \le 1\end{array} \right. \Leftrightarrow m \in \left( { - 2;1} \right].\)

Suy ra có các số nguyên thỏa mãn là \(\left\{ { - 1;0;1} \right\}.\)

Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP