Câu hỏi:
11/05/2022 3,684Gọi S là tập hợp tất cả các số tự nhiên có 8 chữ số được lập từ các chữ số \(1;2;3;4;5;6\). Lấy ngẫu nhiên một số từ S. Xác suất chọn được số có ba chữ số 1, các chữ số còn lại xuất hiện không quá một lần và hai chữ số chẵn không đứng cạnh nhau bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Không gian mẫu: \(n\left( \Omega \right) = {6^8}.\)
Xếp 3 số 1 và 2 số 3 và 5 vào 5 vị trí có: \(\frac{{5!}}{{3!}} = 20\) cách.
Ứng với mỗi cách xếp trên có 6 vị trí trống giữa các số. Xếp 3 số 2, 4, 6 vào 6 vị trí trống đó ta có: \(A_6^3\) cách.
Xác suất là: \(\frac{{20.A_6^3}}{{{6^8}}} = \frac{{25}}{{17496}}.\)
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là
Câu 3:
Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?
Câu 4:
Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là
Câu 5:
Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là
Câu 6:
Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số \(g(x) = f({x^3} + f(x))\) là
Câu 7:
Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y = f'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m \in \left( { - 10\,;\,10} \right)\) để hàm số \(y = f\left( {3x - 1} \right) + {x^3} - 3mx\) đồng biến trên khoảng \(\left( { - 2\,;\,1} \right)\)?
về câu hỏi!