Câu hỏi:

11/05/2022 781

Cho lăng trụ đứng \[ABC.A'B'C'\] có \[AB = AC = BB' = a;\widehat {BAC} = 120^\circ \]. Gọi \[I\] là trung điểm của \[CC'\]. Côsin của góc tạo bởi hai mặt phẳng \[(ABC)\]và \[(AB'I)\]bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho lăng trụ đứng ABC.A'B'C' có \[AB = AC = BB' = a; góc BAC = 120^0. Gọi I là trung điểm của CC'. Côsin của góc tạo  (ảnh 1)

Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB'I} \right).\)

Do tam giác \(ABC\) là hình chiếu của tam giác \(AB'I\) trên mặt phẳng \(\left( {ABC} \right)\) nên ta có

\({S_{ABC}} = {S_{AB'I}}.\cos \alpha \)

\({S_{ABC}} = \frac{1}{2}.AB.AC.\sin {120^0} = \frac{{{a^2}\sqrt 3 }}{4}.\)

\(AB{'^2} = AA{'^2} + A'B{'^2} = 2{a^2}.\)

\(A{I^2} = A{C^2} + C{I^2} = {a^2} + \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{4}\)

\(C'B{'^2} = C'A{'^2} + A'B{'^2} - 2.A'B'.A'C'.\cos {120^0} = 3{a^2}.\)

\(B'{I^2} = B'C{'^2} + C'{I^2} = 3{a^2} + \frac{{{a^2}}}{4} = \frac{{13{a^2}}}{4}.\)

Có \(AB{'^2} + A{I^2} = B'{I^2} \Rightarrow \Delta AB'I\) vuông tại \(A.\)

\({S_{AB'I}} = \frac{1}{2}.AB'.AI = \frac{{{a^2}\sqrt {10} }}{4}.\) Do đó \(\cos \alpha = \frac{{{S_{ABC}}}}{{{S_{AB'I}}}} = \frac{{\sqrt {30} }}{{10}}.\)

Đáp án D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C.

Dựa vào xu hướng của đồ thị hàm số ta có \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)

Tại \(x = 0 \Rightarrow y = d < 0\)

\(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)

Xét thấy 2 điểm cực trị \({x_1} < 0\) và \({x_2} >0.\)</>

Ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2b}}{{3a}} >0 \Rightarrow b >0\\{x_1}{x_2} = \frac{c}{{3a}} < 0 \Rightarrow c >0\end{array} \right.\)</>

Vậy có 2 giá trị dương trong 4 giá trị \(a,b,c,d.\)

Lời giải

Tập xác định \(D = \mathbb{R}\backslash \left\{ {\frac{m}{2}} \right\}.\)

Ta có \(y' = \frac{{{m^2} - 4}}{{{{\left( { - 2x + m} \right)}^2}}}.\)

Để hàm số nghịch biến trên \(\left( {\frac{1}{2}; + \infty } \right)\) thì \(\left\{ \begin{array}{l}{m^2} - 4 < 0\\\frac{m}{2} \notin \left( {\frac{1}{2}; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \in \left( { - 2;2} \right)\\m \le 1\end{array} \right. \Leftrightarrow m \in \left( { - 2;1} \right].\)

Suy ra có các số nguyên thỏa mãn là \(\left\{ { - 1;0;1} \right\}.\)

Đáp án C

Câu 3

Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay