Câu hỏi:
11/05/2022 1,082Có bao nhiêu giá trị của tham số \(m\) để hàm số \(y = {x^3} + \frac{1}{2}({m^2} - 1){x^2} + 1 - m\) có điểm cực đại là \(x = - 1\)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(y = {x^3} + \frac{1}{2}\left( {{m^2} - 1} \right){x^2} + 1 - m\)
\(y' = 3{x^2} + \left( {{m^2} - 1} \right)x\)
Hàm số có điểm cực đại là \(x = - 1\)
\(y = {x^3} + \frac{1}{2}\left( {{m^2} - 1} \right){x^2} + 1 - m\)\( \Rightarrow 3 + \left( {{m^2} - 1} \right)\left( { - 1} \right) = 0 \Rightarrow {m^2} = 4 \Rightarrow \left[ \begin{array}{l}m = 2\\m = - 2\end{array} \right.\)
Lúc này nên hàm số đạt cực đại tại \(x = - 1.\)
Vậy có 2 giá trị \(m\) thỏa yêu cầu bài toán.
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là
Câu 3:
Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?
Câu 4:
Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là
Câu 5:
Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là
Câu 6:
Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số \(g(x) = f({x^3} + f(x))\) là
Câu 7:
Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y = f'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m \in \left( { - 10\,;\,10} \right)\) để hàm số \(y = f\left( {3x - 1} \right) + {x^3} - 3mx\) đồng biến trên khoảng \(\left( { - 2\,;\,1} \right)\)?
về câu hỏi!