Câu hỏi:

11/05/2022 507

Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f'x  như hình vẽ dưới. Có bao nhiêu giá trị nguyên dương của tham số M=max0;2a;a+1  để hàm số y=fx+1+20mln2x2+x  nghịch biến trên khoảng (-1;1)?

Cho hàm số   có đạo hàm liên tục trên   và có đồ thị hàm số   như hình vẽ dưới. Có bao nhiêu giá trị nguyên dương của tham số y=f(x+1)+20/mln((2-x)/(2+x)  để hàm số   nghịch biến trên khoảng (-1;1) ? (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Hàm số y=fx+1+20mln2x2+x  xác định trên (-1;1).

Ta có:y'=f'x+1+20m.44x2 .

Hàm số nghịch biến trên khoảng (-1;1) khi

y'0,x1;1f'x+180m4x20,x1;1 (*).

Đặt t=x+1 khi đó x1;1t0;2 .

Từ (*) ta có  f't80m.13tt+10,t0;2

80mf't.3tt+1,t0;2 (1).

Dựa vào đồ thị hàm số y=f'x  ta có f'x=x+12x2  .

Suy ra ta có f't=t+12t2 .

Xét hàm số VP1=gt=t+12t23tt+1,t0;2 .

g't=t+125t2+18t13=0t=1t=135t=1

.Bảng biến thiên hàm g(t)Cho hàm số   có đạo hàm liên tục trên   và có đồ thị hàm số   như hình vẽ dưới. Có bao nhiêu giá trị nguyên dương của tham số y=f(x+1)+20/mln((2-x)/(2+x)  để hàm số   nghịch biến trên khoảng (-1;1) ? (ảnh 2) 

Dựa vào bảng xét dấu và từ (1) ta có80mmax0;2gt=g180m16m5 .

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a. Cạnh bên SA vuông góc với đáy, góc giữa SD với đáy bằng 60°  . Tính khoảng cách d từ điểm C đến mặt phẳng (SBD)   theo a.

Xem đáp án » 11/05/2022 10,138

Câu 2:

Tìm m để đường thẳngy=x2m  cắt đồ thị hàm số y=x3x+1  tại hai điểm phân biệt?

Xem đáp án » 11/05/2022 6,384

Câu 3:

Đồ thị trong hình vẽ bên dưới là của đồ thị hàm số nào sau đây?
Đồ thị trong hình vẽ bên dưới là của đồ thị hàm số nào sau đây? (ảnh 1)

Xem đáp án » 10/05/2022 2,640

Câu 4:

Cho mặt cầu S:x12+y2+z22=9. Tìm các điểm M, NS  sao cho khoảng cách từ điểm M đến mặt phẳng (P) là lớn nhất, khoảng cách từ điểm N đến mặt phẳng (P) là nhỏ nhất, với (P): x-2y+2z+7=0  .

Xem đáp án » 11/05/2022 1,801

Câu 5:

Một nguồn âm đẳng hướng đặt tại điểm O có công suất truyền âm không đổi. Mức cường độ âm tại điểm M cách O một khoảng R được tính bởi công thứcLM=logkR2 (Ben) với k là hằng số. Biết điểm O thuộc đoạn thẳng AB và mức cường độ âm tại A và B lần lượt là LA=3 (Ben) và LB=5  (Ben). Tính mức cường độ âm tại trung điểm AB (làm tròn đến 2 chữ số sau dấu phẩy).

Xem đáp án » 11/05/2022 1,610

Câu 6:

Cho phương trình log22x12=2log2x2  Số nghiệm thực của phương trình là

Xem đáp án » 10/05/2022 1,605

Câu 7:

Cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng a2  . Lấy M, N lần lượt trên cạnh  AB', A'C sao cho AMAB'=A'NA'C=13 . Tính thể tích V của khối BMNC'C.

Xem đáp án » 11/05/2022 1,570

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store