Câu hỏi:
11/05/2022 241
Cho hàm số f(x) có đạo hàm xác định trên R và thỏa mãn và f(0)=-2019. Số nghiệm nguyên dương của bất phương trình f(x)<7 là
Cho hàm số f(x) có đạo hàm xác định trên R và thỏa mãn và f(0)=-2019. Số nghiệm nguyên dương của bất phương trình f(x)<7 là
Quảng cáo
Trả lời:
Đáp án C
Theo giả thiết (1).
TH1: Nếu thì ta có (1) đúng với mọi .
Do đó .
Vì x nguyên dương nên .
Trong trường hợp này có 45 giá trị nguyên dương của x thỏa mãn yêu cầu đề bài.
TH2: Nếu thì ta có thể giả sử rằng tồn tại hàm số có đạo hàm xác định trên và thỏa mãn yêu cầu đề bài.
Khi đó, tại ta có nên (mâu thuẫn).
Vậy có tất cả 45 giá trị nguyên dương của x thỏa mãn yêu cầu đề bài.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Xác định và .
Ta có .
Kẻ và kẻ .
Khi đó .
Tam giác vuông BAD, có .
Tam giác vuông SAE, có .
Vậy .
Lời giải
Đáp án D
Phương trình hoành độ giao điểm của đường thẳng và đồ thị hàm số là:
(với ) (1).
Để đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt thì phương trình (1) có 2 nghiệm phân biệt khác -1
.
Vậy thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.