Câu hỏi:

11/05/2022 241

Cho hàm số f(x) có đạo hàm xác định trên R và thỏa mãn f'x+4x6x.ex2fx2019=0  và f(0)=-2019. Số nghiệm nguyên dương của bất phương trình f(x)<7 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Theo giả thiết f'x+4x6x.ex2fx2019=06x1ex2fx2019=2xf'x,x  (1).

TH1: Nếu 1ex2fx2019=0  thì x2fx2019=0fx=x22019  ta có (1) đúng với mọi x  .

Do đó fx<7x22019<7x2<20262026<x<2026 .

Vì x nguyên dương nên x1;2;3;...;45 .

Trong trường hợp này có 45 giá trị nguyên dương của x thỏa mãn yêu cầu đề bài.

TH2: Nếu  thì ta có thể giả sử rằng tồn tại hàm số  có đạo hàm xác định trên  và thỏa mãn yêu cầu đề bài.

Khi đó, tại  ta có  nên  (mâu thuẫn).

Vậy có tất cả 45 giá trị nguyên dương của x thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a . Cạnh bên SA vuông góc với đáy, góc giữa SD với đáy bằng 60 độ . Tính khoảng cách d từ điểm C đến mặt phẳng (SBD)  theo a. (ảnh 1)

Xác định 60°=SD,ABCD^=SD,AD^=SDA^  SA=AD.tanSDA^=2a3 .

Ta có dC,(SBD)=dA,(SBD)  .

Kẻ AEBD  và kẻ AKSE .

Khi đó dA,(SBD)=AK .

Tam giác vuông BAD, có AE=AB.ADAB2+AD2=2a5 .

Tam giác vuông SAE, có AK=SA.AESA2+AE2=a32  .

Vậy dC,(SBD)=AK=a32 .

Lời giải

Đáp án D

Phương trình hoành độ giao điểm của đường thẳng y=x2m  và đồ thị hàm số y=x3x+1  là:

 (với x1  ) x22mx+32m=0  (1).

Để đường thẳng  cắt đồ thị hàm số y=x3x+1  tại hai điểm phân biệt thì phương trình (1) có 2 nghiệm phân biệt khác -1

Δ'>0122m.1+32m0m2+2m3>040m>1m<3.

Vậy m>1m<3  thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP