Câu hỏi:

19/05/2022 264

Cho x,y0;2  thỏa mãn x3x+8=eyey11 . Giá trị lớn nhất của  P=lnx+1+lny bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Điều kiện: x1,y1e .

Phương trình tương đương với: x2+5x24=e2y211eye2y211eyx2+5x24=0   *

Ta có: Δ=2x+52>0,x1 .

Do đó: *ey=11+2x+52ey=112x+52ey=x+8ey=3xy=x+8ey=3xe.

+ Với y=x+8e0;2  (vì x+8e>9e>2 ).

+ Với y=3xe0;2  (vì 1x<2 ).

Khi đó, ta được: P=lnx+ln3x  trên 1;21;2 .

Ta có: P'=12xlnx123xln3x=03xln3x=xlnx   ** .

Xét hàm ft=tlnt  trên 1;+  , có f't=lnt+12lnt>0,t1;+  .

Khi đó **f3x=fx3x=xx=32 .

Bảng biến thiên:

Cho x,y thuộc (0;2)  thỏa mãn (x-3)(x+8)=ey(ey-11) . Giá trị lớn nhất của P=(căn lnx+ căn (1+lny)  bằng: (ảnh 1)

Dựa vào bảng biến thiên, suy ra Pmax=2ln3ln2  khi x=32;y=32e .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD)  trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng  (ABCD) góc 30 độ . Tính khoảng cách d từ B đến mặt phẳng (SCD)  theo a. (ảnh 1)

Xác định 30°=SD,ABCD^=SD,HD^=SDH^   SH=HD.tanSDH^=2a3.

Ta có dB,SCD=BDHD.dH,SCD=32.dH,SCD .

Ta có: HCABHCCD .

Kẻ HKSC . Khi đó dH,SCD=HK .

Tam giác vuông SHC, có HK=SH.HCSH2+HC2=2a2121 .

Vậy dB,SCD=32HK=a217 .

Lời giải

Đáp án A

Ta có: y'=3x26mx+32m1

Để hàm số nghịch biến trên đoạn có độ dài bằng 2 thì y'=0  có hai nghiệm phân biệt x1,x2  thỏa mãn: x1x2=2  .

Ta có:Δ'=9m292m1=9m12 .

Để y'=0  có hai nghiệm phân biệt x1,x2  thì Δ'>09m12>0m1 .

Theo định lý Vi-ét, ta có: x1+x2=2mx1x2=2m1.

Theo bài ra ta có: x1x2=2x1x22=4x1+x224x1x2=44m28m=0m=0m=2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP