Câu hỏi:

19/05/2022 208

Cho cấp số cộng an , cấp số nhân bn  thỏa mãn a2>a10,b2>b11  và hàm số fx=x33x sao cho fa2+2=fa1  flog2b2+2=flog2b1 . Tìm số nguyên dương n nhỏ nhất sao cho bn>2019an .

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Xét hàm số fx=x33x  trên 0;+ .

Ta có f'x=3x23=0x=10;+x=10;+.

Bảng biến thiên hàm số f(x) trên 0;+  như sau:

Cho cấp số cộng (an) , cấp số nhân  (bn) thỏa mãn a2>a1>=0, b2>b1>=1  và hàm số  f(x)=x^2-3x sao cho f(a1)+2=f(a1)  và  f(log2b1)+2=f(log2b1). Tìm số nguyên dương n nhỏ nhất sao cho bn>2019an . (ảnh 1)

a2>0  nên fa22fa1=fa2+20   1.

Giả sử a11 , vì fx  đồng biến trên 1;+  nên fa2>fa1  suy ra fa2+2>fa1  vô lý.

Vậy a10;1  do đó 2fa10  ​2.

Từ (1), (2) ta có: fa1=0fa2=2a1=0a2=1.

Vậy số hạng tổng quát của dãy cấp số cộng an  là: an=n1.

Đặt t1=log2b1t2=log2b2 , suy ra: ft1=ft2+2  , vì 1b1<b2   nên 0t1<t2 , theo lập luận trên ta có: t1=0t2=1log2b1=0log2b2=1b1=1b2=2.

Vậy số hạng tổng quát của dãy cấp số nhân bn  bn=2n1 .

Do đó bn>2019an2n1>2019n1   * .

Trong 4 đáp án n=16 là số nguyên dương nhỏ nhất thỏa mãn (*).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các giá trị của m để hàm số y=x33mx2+32m1x+1  nghịch biến trên đoạn có độ dài bằng 2?

Xem đáp án » 19/05/2022 7,711

Câu 2:

Có bao nhiêu giá trị m để đồ thị hàm số y=mx21x23x+2  có đúng hai đường tiệm cận?

Xem đáp án » 17/05/2022 5,317

Câu 3:

Cho hàm số f(x) có đồ thị như hình vẽ:
Cho hàm số f(x)  có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của m thuộc (-10;10)  để  f(căn (x^2+2x+10)-3=m có nghiệm? (ảnh 1)

Có bao nhiêu giá trị nguyên của m10;10  để fx2+2x+103=m  có nghiệm?

Xem đáp án » 19/05/2022 3,321

Câu 4:

Có bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số y=14x4192x2+30x+m   trên đoạn 0;2  đạt giá trị nhỏ nhất?

Xem đáp án » 19/05/2022 3,265

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) góc 30°  . Tính khoảng cách d từ B đến mặt phẳng (SDC) theo a.

Xem đáp án » 18/05/2022 2,626

Câu 6:

Cho hàm số y=ax4+bx2+c  có đồ thị như hình bên. Tính f2 .

Cho hàm số y=ax^4+bx^2+c  có đồ thị như hình bên. Tính f(2)  . (ảnh 1)

Xem đáp án » 17/05/2022 1,236

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:x=2+2ty=3tz=3+5t . Phương trình chính tắc của d là:

Xem đáp án » 17/05/2022 1,198

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store