Câu hỏi:

14/01/2020 2,103 Lưu

Hai bạn Hùng và Vương cùng tham gia một kỳ thi thử trong đó có hai môn thi trắc nghiệm là Toán và Tiếng Anh. Đề thi của mỗi môn gồm 6 mã đề khác nhau và các môn khác nhau thì mã đề cũng khác nhau. Đề thi được sắp xếp và phát cho học sinh một cách ngẫu nhiên. Tính xác suất để trong hai môn Toán và Tiếng Anh thì hai bạn Hùng và Vương có chung đúng một mã đề thi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Không gian mẫu là: Ω = 64 

TH1: Môn Toán trùng mã đề thi môn Tiếng Anh không trùng có:

Bạn Hùng chọn 1 mã toán có 6 cách và 6 cách chọn mã môn Tiếng Anh khi đó Vương có 1 cách là phải giống Hùng mã Toán và 5 cách chọn mã Tiếng Anh có 6.1.6.5 = 180 cách.

TH2: Môn Tiếng Anh trùng mã đề thi môn Toán không trùng có: 6.1.6.5 = 180 cách.

Vậy P = 180+18064 = 518

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp.

Sử dụng định nghĩa của xác suất.

Lời giải chi tiết.

Tổng số sách là 4 + 3 + 2 = 9. Số cách lấy 3 quyển sách là C93 = 84 (cách).

Số quyển sách không phải là sách toán là 3 + 2 = 5

Số cách lấy 3 quyển sách không phải là sách toán là C53 = 10 (cách).

Do đó số cách lấy được ít nhất một quyển sách toán là 84 - 10 = 74 (cách).

Vậy xác suất để lấy đượcc ít nhất một quyển là toán là 74 84 = 3742

Lời giải

Đáp án B

Phương pháp.

Chia ra các khả năng có thể có của học sinh các lớp. Tính số cách chọn có thể có của mỗi trường hợp này. Lấy tổng kết quả các khả năng ở trên lại.

Lời giải chi tiết.

Cách 1:

Ta xét các trường hợp sau. 

Có 1 học sinh lớp 12C có 2 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có 2C32C42 = 36 

 cách chọn.

Có 1 học sinh lớp 12C có 3 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có 2C33C41 = 8 cách chọn.

Có 1 học sinh lớp 12C có 1  học sinh lớp 12B và 3 học sinh lớp 12A khi đó ta có 2C31C43 = 24 cách chọn.

Có 2 học sinh lớp 12C có 1 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có C31C42 = 18 cách chọn.

Có 2 học sinh lớp 12C có 2 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có C32C41 = 12 cách chọn.

Vậy tổng số cách chọn là 36 + 8 + 24 + 18 + 12 = 98

Cách 2:

Số cách chọn 5 bạn từ đội văn nghệ là: \(C_9^5\)

Số cách chọn 5 bạn chỉ từ hai lớp 12A và 12B: \(C_7^5\)

Số cách chọn 5 bạn chỉ từ hai lớp 12B và 12C: \(C_5^5\)

Số cách chọn 5 bạn chỉ từ hai lớp 12C và 12A: \(C_6^2\)

Vậy số cách để chọn 5 bạn từ đội văn nghệ sao cho lớp nào cũng có học sinh được chọn là:

\(C_9^5 - C_7^5 - C_5^5 - C_6^5 = 98\)

Chọn B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP