Câu hỏi:
14/01/2020 33,092Có 5 học sinh không quen biết nhau cùng đến một cửa hàng kem có 6 quầy phục vụ. Xác suất để có 3 học sinh cùng vào 1 quầy và 2 học sinh còn lại vào 1 quầy khác là
Câu hỏi trong đề: Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải !!
Quảng cáo
Trả lời:
Đáp án B
Phương pháp giải: Áp dụng các quy tắm đếm cơ bản
Lời giải:
Một người có 6 cách chọn quầy khác nhau => Số phần tử của không gian mẫu là
Chọn 3 học sinh trong 5 học sinh có cách, chọn 1 quầy trong 6 quầy có cách.
Suy ra có cách chọn 3 học sinh vào 1 quầy bất kì.
Khi đó, 2 học sinh còn lại sẽ chọn 5 quầy còn lại => có cách.
Do đó, số kết quả thuận lợi cho biến cố là
Vậy
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp.
Sử dụng định nghĩa của xác suất.
Lời giải chi tiết.
Tổng số sách là 4 + 3 + 2 = 9. Số cách lấy 3 quyển sách là (cách).
Số quyển sách không phải là sách toán là 3 + 2 = 5
Số cách lấy 3 quyển sách không phải là sách toán là (cách).
Do đó số cách lấy được ít nhất một quyển sách toán là 84 - 10 = 74 (cách).
Vậy xác suất để lấy đượcc ít nhất một quyển là toán là
Lời giải
Đáp án B
Phương pháp.
Chia ra các khả năng có thể có của học sinh các lớp. Tính số cách chọn có thể có của mỗi trường hợp này. Lấy tổng kết quả các khả năng ở trên lại.
Lời giải chi tiết.
Cách 1:
Ta xét các trường hợp sau.
Có 1 học sinh lớp 12C có 2 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có
cách chọn.
Có 1 học sinh lớp 12C có 3 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có cách chọn.
Có 1 học sinh lớp 12C có 1 học sinh lớp 12B và 3 học sinh lớp 12A khi đó ta có cách chọn.
Có 2 học sinh lớp 12C có 1 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có cách chọn.
Có 2 học sinh lớp 12C có 2 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có cách chọn.
Vậy tổng số cách chọn là 36 + 8 + 24 + 18 + 12 = 98
Cách 2:
Số cách chọn 5 bạn từ đội văn nghệ là: \(C_9^5\)
Số cách chọn 5 bạn chỉ từ hai lớp 12A và 12B: \(C_7^5\)
Số cách chọn 5 bạn chỉ từ hai lớp 12B và 12C: \(C_5^5\)
Số cách chọn 5 bạn chỉ từ hai lớp 12C và 12A: \(C_6^2\)
Vậy số cách để chọn 5 bạn từ đội văn nghệ sao cho lớp nào cũng có học sinh được chọn là:
\(C_9^5 - C_7^5 - C_5^5 - C_6^5 = 98\)
Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.