Câu hỏi:

21/05/2022 1,891

Cho vecto AB=a. Hãy xác định điểm C sao cho BC=a.

a) Tìm mối quan hệ giữa AB và a+a.

b) Vecto a+a có mối quan hệ như thế nào về hướng và độ dài với vecto a.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) AB=a  nên AB   cùng hướng và cùng độ lớn với a  ;

+)  BC=anên BC  cùng hướng và cùng độ lớn với a  .

Do đó AB  BC  cùng hướng và cùng độ lớn với a

Suy ra ba điểm A, B, C thẳng hàng và AB = BC

Hay B là trung điểm của AC.

Vậy điểm C là điểm sao cho B là trung điểm của AC.

Cho vecto AB = vecto a. Hãy xác định điểm C sao cho vecto BC = vecto a (ảnh 1)

a) Ta có: a+a=AB+BC=AC (quy tắc ba điểm)

Suy ra  a+a=AC=AC

Mà AC = AB + BC = 2AB nên a+a=2AB  .

Lại vecto AC cùng hướng với vecto AB 

Vậy a+a  cùng hướng với vecto AB  và a+a=2AB=2AB  .

b)Vì AB=a nên AB cùng hướng với vecto ABvà a+a=2AB.

 cùng hướng với vecto AB  và a+a=2AB  .

Do đó a+a cùng hướng với vecto a a+a=2a.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chất điểm A chịu tác động của ba lực vecto F1, vecto F2, vecto F3 như Hình 4.30 (ảnh 2)

Ta có: F1+F2+F3=0

F1+F2=F3

F1+F2=OA+OB=OD (OBDA là hình bình hành)

OD=F3

=> Hai vecto OD F3 là hai vecto đối nhau

OD=F3 BOD^=600.

Ta lại có: BD=F1

Xét ΔOBD, có:

OB=BDtan600=203NF2=203N.OD=BDsin600=4033NF3=4033N.

Vậy độ lớn vecto F2,F3 lần lượt là 203N,4033N.

Lời giải

Ta có hình vẽ sau:

Cho hình bình hành ABCD. Gọi M là trung điểm cạnh BC. Hãy biểu thị  (ảnh 1)

Gọi E là điểm đối xứng với A qua M. Khi đó ABEC là hình bình hành

Cho hình bình hành ABCD. Gọi M là trung điểm cạnh BC. Hãy biểu thị  (ảnh 2)

Ta có: AB+AC=AE (quy tắc hình bình hành)

Mà AE=2AM

AM=AB+AC2

Ta lại có: AC=AB+AD (quy tắc hình bình hành)

AM=AB+AB+AD2=2AB+AD2=AB+12AD.

Vậy AM=AB+12AD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay