Câu hỏi:
25/05/2022 1,748Quảng cáo
Trả lời:
Phương pháp giải: - Giải phương trình thứ nhất tìm \(y\)
- Thế \(y\)tìm được vào phương trình thứ hai. Tìm điều kiện để phương trình thứ hai vô nghiệm.
Giải chi tiết:
Xét phương trình:
\(\begin{array}{l}{y^2} - \left| y \right| = 6\\ \Leftrightarrow {\left| y \right|^2} - \left| y \right| - 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\left| y \right|\, = \, - 2\,\left( {loai} \right)\\\left| y \right|\, = \,3\, \Leftrightarrow \,y\, = \, \pm \,3\,\end{array} \right.\end{array}\)
Với phương trình thứ hai trở thành \({x^2} - 2mx + 7 = 0\)(1)
Với phương trình thứ hai trở thành \({x^2} - 2mx + 1 = 0\)(2)
Để hệ phương trình đã cho có nghiệm thì phương trình (1) và (2) đều vô nghiệm:
Vậy có 1 giá trị nguyên của \(m\)thỏa mãn là \(m = 0\)
Chọn A.
Đã bán 1,4k
Đã bán 851
Đã bán 902
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Cho \(a\,,\,b\)là các số nguyên và . Tính \(P\, = \,{a^2}\, + \,{b^2}\, - \,a\, - \,b\).
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận