Câu hỏi:
23/05/2022 435Quảng cáo
Trả lời:
Phương pháp giải: Sử dụng phương trình mặt phẳng theo đoạn chắn :
Mặt phẳng \(\left( P \right)\) cắt \(Ox\,;\,Oy\,;\,Oz\) lần lượt tại \(A\left( {a\,;\,0\,;\,0} \right)\,,\,B\left( {0\,;\,b\,;\,0} \right)\,,\,C\left( {0\,;\,0;\,c} \right)\,\,\left( {a\,,\,b\,,\,c\, \ne \,0} \right)\) thì có phương trình \(\left( P \right)\,\,:\,\,\frac{x}{a}\, + \,\frac{y}{b}\, + \,\frac{z}{c}\, = \,1\)
Sử dụng công thức trọng tâm : \(M\) là trọng tâm \[\Delta \,ABC\] thì\(\left\{ \begin{array}{l}{x_M}\, = \,\frac{{{x_A}\, + \,{x_B}\, + \,{x_C}}}{3}\\{y_M}\, = \,\frac{{{y_A}\, + \,{y_B}\, + \,{y_C}}}{3}\\{z_M}\, = \,\frac{{{z_A}\, + \,{z_B}\, + \,{z_C}}}{3}\end{array} \right.\)
Giải chi tiết:
Theo đề bài ta có : \(A\left( {a\,;\,0\,;\,0} \right)\,,\,B\left( {0\,;\,b\,;\,0} \right)\,,\,C\left( {0\,;\,0;\,c} \right)\,\,\left( {a\,,\,b\,,\,c\, \ne \,0} \right)\)
Vì \(M\) là trọng tâm \[\Delta \,ABC\] nên \(\left\{ \begin{array}{l}{x_M}\, = \,\frac{{{x_A}\, + \,{x_B}\, + \,{x_C}}}{3}\\{y_M}\, = \,\frac{{{y_A}\, + \,{y_B}\, + \,{y_C}}}{3}\\{z_M}\, = \,\frac{{{z_A}\, + \,{z_B}\, + \,{z_C}}}{3}\end{array} \right.\, \Leftrightarrow \,\left\{ \begin{array}{l}1\, = \,\frac{a}{3}\\2\, = \,\frac{b}{3}\\3\, = \,\frac{c}{3}\end{array} \right.\, \Leftrightarrow \,\left\{ \begin{array}{l}a\, = \,3\\b\, = \,6\\c\, = \,9\end{array} \right.\)
Suy ra \(A\left( {3\,;\,0\,;\,0} \right)\,,\,B\left( {0\,;\,6\,;\,0} \right)\,,\,C\left( {0\,;\,0;\,9} \right)\)
Phương trình mặt phẳng \(\left( P \right)\) là \(\,\frac{x}{a}\, + \,\frac{y}{b}\, + \,\frac{z}{c}\, = \,1\, \Leftrightarrow \,6x\, + \,3y\, + \,2z\, - \,18\, = \,0\)
Chọn C.
Đã bán 851
Đã bán 902
Đã bán 1,4k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Cho \(a\,,\,b\)là các số nguyên và . Tính \(P\, = \,{a^2}\, + \,{b^2}\, - \,a\, - \,b\).
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận