Câu hỏi:

23/05/2022 294

Trong không gian Oxyz cho điểm M (1;2;3). Phương trình mặt phẳng (P) đi qua M cắt các trục tọa độ Ox;Oy;Oz lần lượt tại A,B,C sao cho M là trọng tâm của tam giác ABC là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải: Sử dụng phương trình mặt phẳng theo đoạn chắn :

Mặt phẳng \(\left( P \right)\) cắt \(Ox\,;\,Oy\,;\,Oz\) lần lượt tại \(A\left( {a\,;\,0\,;\,0} \right)\,,\,B\left( {0\,;\,b\,;\,0} \right)\,,\,C\left( {0\,;\,0;\,c} \right)\,\,\left( {a\,,\,b\,,\,c\, \ne \,0} \right)\) thì có phương trình  \(\left( P \right)\,\,:\,\,\frac{x}{a}\, + \,\frac{y}{b}\, + \,\frac{z}{c}\, = \,1\)

Sử dụng công thức trọng tâm : \(M\) là trọng tâm \[\Delta \,ABC\] thì\(\left\{ \begin{array}{l}{x_M}\, = \,\frac{{{x_A}\, + \,{x_B}\, + \,{x_C}}}{3}\\{y_M}\, = \,\frac{{{y_A}\, + \,{y_B}\, + \,{y_C}}}{3}\\{z_M}\, = \,\frac{{{z_A}\, + \,{z_B}\, + \,{z_C}}}{3}\end{array} \right.\)

Giải chi tiết:

Theo đề bài ta có : \(A\left( {a\,;\,0\,;\,0} \right)\,,\,B\left( {0\,;\,b\,;\,0} \right)\,,\,C\left( {0\,;\,0;\,c} \right)\,\,\left( {a\,,\,b\,,\,c\, \ne \,0} \right)\)

Vì \(M\) là trọng tâm \[\Delta \,ABC\] nên \(\left\{ \begin{array}{l}{x_M}\, = \,\frac{{{x_A}\, + \,{x_B}\, + \,{x_C}}}{3}\\{y_M}\, = \,\frac{{{y_A}\, + \,{y_B}\, + \,{y_C}}}{3}\\{z_M}\, = \,\frac{{{z_A}\, + \,{z_B}\, + \,{z_C}}}{3}\end{array} \right.\, \Leftrightarrow \,\left\{ \begin{array}{l}1\, = \,\frac{a}{3}\\2\, = \,\frac{b}{3}\\3\, = \,\frac{c}{3}\end{array} \right.\, \Leftrightarrow \,\left\{ \begin{array}{l}a\, = \,3\\b\, = \,6\\c\, = \,9\end{array} \right.\)

Suy ra \(A\left( {3\,;\,0\,;\,0} \right)\,,\,B\left( {0\,;\,6\,;\,0} \right)\,,\,C\left( {0\,;\,0;\,9} \right)\)
Phương trình mặt phẳng \(\left( P \right)\) là \(\,\frac{x}{a}\, + \,\frac{y}{b}\, + \,\frac{z}{c}\, = \,1\, \Leftrightarrow \,6x\, + \,3y\, + \,2z\, - \,18\, = \,0\)

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai dao động điều hoà cùng phương, cùng tần số có biên độ và pha ban đầu lần lượt là A1, A2, φ1, φ2. Dao động tổng hợp của hai dao động trên có biên độ được tính theo công thức

Xem đáp án » 24/05/2022 10,930

Câu 2:

Theo số liệu từ Tổng cục thống kê, dân số Việt Nam năm 2015 là 91,7 triệu người. Giả sử tỉ lệ tăng dân số hàng năm của Việt Nam trong giai đoạn 2015 – 2050 ở mức không đổi là 1,1%. Hỏi đến năm nào dân số Việt Nam sẽ đạt mức 120,5 triệu người?

Xem đáp án » 23/05/2022 6,583

Câu 3:

Một chất điểm chuyển động theo quy luật \(S\,\left( t \right)\, = \,1\, + \,3{t^2}\, - \,{t^3}.\) Vận tốc của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu?

Xem đáp án » 25/05/2022 5,100

Câu 4:

Tác phẩm nào sau đây KHÔNG thuộc về khuynh hướng văn học hiện thực?

Xem đáp án » 23/05/2022 4,389

Câu 5:

Tập hợp các giá trị m để hàm số y=x33-(m+ 5)x22+ 5mx+ 1 đồng biến trên \(\left( {6\,;\,7} \right)\)

Xem đáp án » 25/05/2022 3,816

Câu 6:

Cho \(a\,,\,b\)là các số nguyên và limx1ax2+bx- 5x- 1= 20. Tính \(P\, = \,{a^2}\, + \,{b^2}\, - \,a\, - \,b\).

Xem đáp án » 12/07/2024 3,792

Câu 7:

Một xe mô tô đang chạy với vận tốc \(20m/s\) thì người lái xe nhìn thấy một chướng ngại vật nên đạp phanh. Từ thời điểm đó, mô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right)\, = \,20\, - \,5t\), trong đó t là thời gian (tính bằng giây) kể từ lúc đạp phanh. Quãng đường mà mô tô đi được từ khi người lái xe đạp phanh đến lúc mô tô dừng lại là

Xem đáp án » 23/05/2022 3,147

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store