Câu hỏi:
23/05/2022 193
Cho hàm số Gọi \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\). Khẳng định nào sau là sai?
Quảng cáo
Trả lời:
Phương pháp giải: \(\int {\frac{1}{{ax\, + \,b}}dx\, = \,\frac{1}{a}\ln \left| {ax\, + \,b} \right|\, + \,C} \)
Giải chi tiết:
\(\int {f\left( x \right)dx\, = \,\int {\frac{1}{{2x\, + \,3}}dx\, = \,\frac{1}{2}\int {\frac{{d\left( {2x\, + \,3} \right)}}{{2x\, + \,3}}\, = \,\frac{{\ln \left| {2x\, + \,3} \right|}}{2}\, + \,C} } } \)
Khi \(C\, = \,1\, \Rightarrow \) Đáp án A đúng.
Đáp án B: \(F\left( x \right)\, = \,\frac{{\ln {{\left| {2x\, + \,3} \right|}^2}}}{4}\, + \,3\, = \,\frac{{2\ln \left| {2x\, + \,3} \right|}}{4}\, + \,3\, = \,\frac{{\ln \left| {2x\, + \,3} \right|}}{2}\, + \,3\, \Rightarrow \,C\, = \,3\)
Đáp án D:
\(F\left( x \right)\, = \,\frac{{\ln \left| {x\, + \,\frac{3}{2}} \right|}}{2}\, + \,4\, = \,\frac{{\ln \left| {2x\, + \,3} \right|\, - \,\ln 2}}{2}\, + \,4\, = \,\frac{{\ln \left| {2x\, + \,3} \right|}}{2}\, - \,\frac{{\ln 2}}{2}\, + \,4\, \Rightarrow \,C\, = \, - \frac{{\ln 2}}{2}\, + \,4\)
\( \Rightarrow \,F\left( x \right)\, = \,\frac{{\ln \left| {4x\, + \,6} \right|}}{4}\, + \,2\) là khẳng định sai
Chọn C.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
Sử dụng công thức tính quãng đường đi được của vật có vận tốc \(v\left( t \right)\) từ thời điểm đến \(t\, = \,a\) thời điểm \(t\, = \,b\) là: \(S\, = \,\int\limits_a^b {v\left( t \right)} \,dt\)
Giải chi tiết:
Thời điểm xe dừng hẳn thoả mãn \(v\left( t \right)\, = \,0\, \Leftrightarrow \,20\, - \,5t\, = \,0\, \Leftrightarrow \,t\, = \,4\)
Quãng đường mà mô tô đi được từ khi người lái xe đạp phanh đến lúc mô tô dừng lại là
\(\int\limits_0^4 {\left( {20\, - \,5t} \right)\,dt} \, = \,40\)
Chọn D.
Lời giải
Phương pháp giải: Sử dụng công thức lãi kép \({A_n}\, = \,A{\left( {1\, + \,r} \right)^n}\)
Giải chi tiết:
Giả sử sau n năm dân số nước ta đạt mức 120,5 triệu người ta có:
\(120,5\, = \,91,7\,{\left( {1\, + \,\frac{{1,1}}{{100}}} \right)^n}\, \Leftrightarrow \,n\, \approx \,24,97\)
Vậy phải sau 25 năm, tức là vào năm \(2015\, + \,25\, = \,2040\)
Chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.