Câu hỏi:
25/05/2022 2,633Cho hình chóp S.ABC có đáy ABC là tam giác vuông với \(AB\, = \,AC\, = \,2\). Cạnh bên SA vuông góc với đáy và \(SA\, = \,3\). Gọi \(M\)là trung điểm của SC.
Tính khoảng cách giữa AM và BC.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Phương pháp giải: - Sử dụng: khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường này đến mặt phẳng song song chứa đường thẳng kia
- Sử dụng: \({\left[ {\left( {\frac{1}{{{{(x - 1)}^2}}}} \right)} \right]^\prime }\) \(d\left( {S\,;\,\left( {AMN} \right)} \right) = \frac{{3{V_{S.AMN}}}}{{{S_{\Delta AMN}}}}\)
Giải chi tiết:
Gọi N là trung điểm của BC ta có MN // BC \( \Rightarrow \)BC // (AMN) \( \supset \)AM
\( \Rightarrow \)d (AM; BC) = d (BC; (AMN)) = d (C; (AMN))
Lại có: SC \( \cap \) (AMN) = M \( \Rightarrow \) \(\frac{{d(C;(AMN))}}{{d(S;(AMN))}} = \frac{{CM}}{{SM}} = 1\)
\( \Rightarrow d(C;(AMN)) = d(S;(AMN))\)
Ta có:
Gọi p là nửa chu vi tam giác AMN ta có
Vậy \( \Rightarrow d(AM;BC) = d(S;(AMN)) = \frac{{3{V_{S.AMN}}}}{{{S_{\Delta AMN}}}} = \frac{{3.\frac{1}{2}}}{{\frac{{\sqrt {22} }}{4}}} = \frac{{3\sqrt {22} }}{{11}}\)
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(a\,,\,b\)là các số nguyên và . Tính \(P\, = \,{a^2}\, + \,{b^2}\, - \,a\, - \,b\).
Câu 5:
Câu 6:
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!