Câu hỏi:
25/05/2022 2,575Cho hình chóp S.ABC có đáy ABC là tam giác vuông với \(AB\, = \,AC\, = \,2\). Cạnh bên SA vuông góc với đáy và \(SA\, = \,3\). Gọi \(M\)là trung điểm của SC.
Tính khoảng cách giữa AM và BC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải: - Sử dụng: khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường này đến mặt phẳng song song chứa đường thẳng kia
- Sử dụng: \({\left[ {\left( {\frac{1}{{{{(x - 1)}^2}}}} \right)} \right]^\prime }\) \(d\left( {S\,;\,\left( {AMN} \right)} \right) = \frac{{3{V_{S.AMN}}}}{{{S_{\Delta AMN}}}}\)
Giải chi tiết:
Gọi N là trung điểm của BC ta có MN // BC \( \Rightarrow \)BC // (AMN) \( \supset \)AM
\( \Rightarrow \)d (AM; BC) = d (BC; (AMN)) = d (C; (AMN))
Lại có: SC \( \cap \) (AMN) = M \( \Rightarrow \) \(\frac{{d(C;(AMN))}}{{d(S;(AMN))}} = \frac{{CM}}{{SM}} = 1\)
\( \Rightarrow d(C;(AMN)) = d(S;(AMN))\)
Ta có:
Gọi p là nửa chu vi tam giác AMN ta có
Vậy \( \Rightarrow d(AM;BC) = d(S;(AMN)) = \frac{{3{V_{S.AMN}}}}{{{S_{\Delta AMN}}}} = \frac{{3.\frac{1}{2}}}{{\frac{{\sqrt {22} }}{4}}} = \frac{{3\sqrt {22} }}{{11}}\)
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho \(a\,,\,b\)là các số nguyên và . Tính \(P\, = \,{a^2}\, + \,{b^2}\, - \,a\, - \,b\).
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Câu hỏi điền từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
về câu hỏi!