Câu hỏi:
23/05/2022 1,854Cho hàm số \(y\, = \,f\left( x \right)\) liên tục trên \(\mathbb{R}\), có 3 cực trị và có đồ thị như hình vẽ.
Tìm số điểm cực trị của hàm số \(y\, = \,f\left( {\frac{1}{{{{\left( {x\, - \,1} \right)}^2}}}} \right)\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Phương pháp giải: Tính \({\left[ {\left( {\frac{1}{{{{(x - 1)}^2}}}} \right)} \right]^\prime }\)và tìm số nghiệm bội lẻ, từ đó suy ra số cực trị
Giải chi tiết:
Ta có:
\[\begin{array}{l}g'(x)\, = \,{\left[ {f\,\left( {\frac{1}{{{{(x\, - \,1)}^2}}}} \right)} \right]^\prime } = {\left[ {\frac{1}{{{{(x\, - \,1)}^2}}}} \right]^\prime }.\,f'\left( {\frac{1}{{{{(x\, - \,1)}^2}}}} \right)\\ = \, - \frac{2}{{{{(x\, - \,1)}^3}}}.\,f'\left( {\frac{1}{{{{(x\, - \,1)}^2}}}} \right)\end{array}\]
\(g'(x) = 0 \Leftrightarrow f'\left( {\frac{1}{{{{(x - 1)}^2}}}} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\frac{1}{{{{(x - 1)}^2}}} = {x_1} < 0(VN)}\\{\frac{1}{{{{(x - 1)}^2}}} = 0(VN)}\\{\frac{1}{{{{(x - 1)}^2}}} = {x_3} > 0}\end{array}} \right.\)
(nghiệm đơn)
Vậy hàm số đã cho có 2 điểm cực trị
Chọn D.
Đã bán 851
Đã bán 1,4k
Đã bán 902
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Cho \(a\,,\,b\)là các số nguyên và . Tính \(P\, = \,{a^2}\, + \,{b^2}\, - \,a\, - \,b\).
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận