Câu hỏi:
23/05/2022 2,048
Cho hàm số \(y\, = \,f\left( x \right)\) liên tục trên \(\mathbb{R}\), có 3 cực trị và có đồ thị như hình vẽ.

Tìm số điểm cực trị của hàm số \(y\, = \,f\left( {\frac{1}{{{{\left( {x\, - \,1} \right)}^2}}}} \right)\)
Cho hàm số \(y\, = \,f\left( x \right)\) liên tục trên \(\mathbb{R}\), có 3 cực trị và có đồ thị như hình vẽ.
Tìm số điểm cực trị của hàm số \(y\, = \,f\left( {\frac{1}{{{{\left( {x\, - \,1} \right)}^2}}}} \right)\)
Quảng cáo
Trả lời:
Phương pháp giải: Tính \({\left[ {\left( {\frac{1}{{{{(x - 1)}^2}}}} \right)} \right]^\prime }\)và tìm số nghiệm bội lẻ, từ đó suy ra số cực trị
Giải chi tiết:
Ta có:
\[\begin{array}{l}g'(x)\, = \,{\left[ {f\,\left( {\frac{1}{{{{(x\, - \,1)}^2}}}} \right)} \right]^\prime } = {\left[ {\frac{1}{{{{(x\, - \,1)}^2}}}} \right]^\prime }.\,f'\left( {\frac{1}{{{{(x\, - \,1)}^2}}}} \right)\\ = \, - \frac{2}{{{{(x\, - \,1)}^3}}}.\,f'\left( {\frac{1}{{{{(x\, - \,1)}^2}}}} \right)\end{array}\]
\(g'(x) = 0 \Leftrightarrow f'\left( {\frac{1}{{{{(x - 1)}^2}}}} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\frac{1}{{{{(x - 1)}^2}}} = {x_1} < 0(VN)}\\{\frac{1}{{{{(x - 1)}^2}}} = 0(VN)}\\{\frac{1}{{{{(x - 1)}^2}}} = {x_3} > 0}\end{array}} \right.\)
(nghiệm đơn)
Vậy hàm số đã cho có 2 điểm cực trị
Chọn D.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
Sử dụng công thức tính quãng đường đi được của vật có vận tốc \(v\left( t \right)\) từ thời điểm đến \(t\, = \,a\) thời điểm \(t\, = \,b\) là: \(S\, = \,\int\limits_a^b {v\left( t \right)} \,dt\)
Giải chi tiết:
Thời điểm xe dừng hẳn thoả mãn \(v\left( t \right)\, = \,0\, \Leftrightarrow \,20\, - \,5t\, = \,0\, \Leftrightarrow \,t\, = \,4\)
Quãng đường mà mô tô đi được từ khi người lái xe đạp phanh đến lúc mô tô dừng lại là
\(\int\limits_0^4 {\left( {20\, - \,5t} \right)\,dt} \, = \,40\)
Chọn D.
Lời giải
Phương pháp giải: Sử dụng công thức lãi kép \({A_n}\, = \,A{\left( {1\, + \,r} \right)^n}\)
Giải chi tiết:
Giả sử sau n năm dân số nước ta đạt mức 120,5 triệu người ta có:
\(120,5\, = \,91,7\,{\left( {1\, + \,\frac{{1,1}}{{100}}} \right)^n}\, \Leftrightarrow \,n\, \approx \,24,97\)
Vậy phải sau 25 năm, tức là vào năm \(2015\, + \,25\, = \,2040\)
Chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.