Câu hỏi:

25/05/2022 213

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên (-1;+). Biểu thức \(2f\left( x \right)\, + \,\left( {{x^2}\, - \,1} \right)f'\left( x \right)\, = \,\frac{{x{{\left( {x\, + \,1} \right)}^2}}}{{\sqrt {{x^2}\, + \,3} }}\) được thỏa mãn \(\forall x\, \in \,\left( { - 1\,;\, + \infty } \right)\). Tính giá trị \(f\left( 0 \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:  Chia cả 2 vế cho \({(x + 1)^2}\). Sử dụng phương pháp lấy nguyên hàm hai vế

Giải chi tiết: Ta có:

\(\begin{array}{l}2f(x) + ({x^2} - 1)f'(x) = \frac{{x{{(x + 1)}^2}}}{{\sqrt {{x^2} + 3} }}\\ \Leftrightarrow \frac{2}{{{{(x + 1)}^2}}}f(x) + \frac{{x - 1}}{{x + 1}}f'(x) = \frac{x}{{\sqrt {{x^2} + 3} }}\\ \Leftrightarrow {\left( {\frac{{x - 1}}{{x + 1}}} \right)^\prime }.f(x) + \frac{{x - 1}}{{x + 1}}.f'(x) = \frac{x}{{\sqrt {{x^2} + 3} }}\\ \Leftrightarrow {\left[ {\frac{{x - 1}}{{x + 1}}.f(x)} \right]^\prime } = \frac{x}{{\sqrt {{x^2} + 3} }}\end{array}\)

Lấy nguyên hàm hai vế ta được:

\(\int {{{\left[ {\frac{{x - 1}}{{x + 1}}.f(x)} \right]}^\prime }dx = \int {\frac{x}{{\sqrt {{x^2} + 3} }}dx} } \)

\( \Leftrightarrow \frac{{x - 1}}{{x + 1}}.f(x) = \int {\frac{x}{{\sqrt {{x^2} + 3} }}dx} \)

Đặt \(I = \int {\frac{x}{{\sqrt {{x^2} + 3} }}dx} \)

Cho hàm số f( x ) có đạo hàm liên tục trên (ảnh 1)

Khi đó ta có: I=tdtt =t+C=x2+3+C

x-1x+1.f(x)=x2+3 +C

Thay \(x = 1\) ta có: \(0 = \,2\, + \,C\, \Leftrightarrow \,C\, = \, - 2\)

x-1x+1.f(x)=x2+3 -2

Thay \(x = 0\) ta có: -f(0)=3 -2f(0)=2-3

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

Sử dụng công thức tính quãng đường đi được của vật có vận tốc \(v\left( t \right)\) từ thời điểm đến \(t\, = \,a\) thời điểm \(t\, = \,b\) là: \(S\, = \,\int\limits_a^b {v\left( t \right)} \,dt\)

Giải chi tiết:

Thời điểm xe dừng hẳn thoả mãn \(v\left( t \right)\, = \,0\, \Leftrightarrow \,20\, - \,5t\, = \,0\, \Leftrightarrow \,t\, = \,4\)

Quãng đường mà mô tô đi được từ khi người lái xe đạp phanh đến lúc mô tô dừng lại là

\(\int\limits_0^4 {\left( {20\, - \,5t} \right)\,dt} \, = \,40\)

Chọn D.

Lời giải

Phương pháp giải: Sử dụng công thức lãi kép \({A_n}\, = \,A{\left( {1\, + \,r} \right)^n}\)

Giải chi tiết:

Giả sử sau n năm dân số nước ta đạt mức 120,5 triệu người ta có:

\(120,5\, = \,91,7\,{\left( {1\, + \,\frac{{1,1}}{{100}}} \right)^n}\, \Leftrightarrow \,n\, \approx \,24,97\)

Vậy phải sau 25 năm, tức là vào năm \(2015\, + \,25\, = \,2040\)

Chọn đáp án D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP