Câu hỏi:

23/05/2022 725 Lưu

Gọi \(S\)là tập hợp tất cả các số tự nhiên có 4 chữ số đội một khác nhau lập thành từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên 1 số từ tập \(S\). Tính xác suất để số được chọn có đúng 2 chữ số chẵn.

A. \(\frac{{24}}{{35}}\)

B. \(\frac{{144}}{{245}}\)
C. \(\frac{{72}}{{245}}\)
D. \(\frac{{18}}{{35}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương pháp giải: - Tính số phần tử của không gian mẫu

- Gọi A là biến cố: “Số được chọn có đúng 2 chữ số chẵn”, số phần tử của A bằng số các số có 4 chữ số khác nhau trong đó có 2 chữ số chẵn, hai chữ số lẻ là \({\left( {C_4^2} \right)^2}.\,4!\) (bao gồm cả số có chữ số 0 đứng đầu)

- Số các số có 4 chữ số khác nhau trong đó có 2 chữ số chẵn, hai chữ số lẻ trong đó bắt buộc chữ số 0 đứng đầu

- Tính xác suất của biến cố A: \(P(A) = \frac{{n(A)}}{{n(\Omega )}}\)

Giải chi tiết:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} \)(\(a \ne 0\))

Không gian mẫu \(n(\Omega )\, = \,7.\,A_7^3\, = \,1470\)

Gọi A là biến cố: “số được chọn có đúng hai chữ số chẵn”

Chọn 2 chữ số chẵn trong các số 0, 1, 2, 3, 4, 5, 6, 7, có \(C_4^2\)cách, chọn 2 chữ số lẻ trong các số 0,1,2,3,4,5,6,7 có \(C_4^2\)cách

\( \Rightarrow \)số các số có 4 chữ số khác nhau trong đó có 2 chữ số chẵn, hai chữ số lẻ là \({\left( {C_4^2} \right)^2}.\,4!\) (bao gồm các số có chữ số 0 đứng đầu)

Số các số có 4 chữ số khác nhau trong đó có 2 chữ số chẵn, hai chữ số lẻ trong đó bắt buộc có chữ số 0 đứng đầu là: \(C_3^1.\,C_4^2.\,3!\)

\(\begin{array}{l} \Rightarrow n(A)\, = \,{\left( {C_4^2} \right)^2}.\,4!\, - \,C_3^1.\,C_4^2.\,3!\, = \,756\\P(A)\, = \,\frac{{n(A)}}{{n(\Omega )}}\, = \,\frac{{756}}{{1470}}\, = \,\frac{{18}}{{35}}\end{array}\)

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

Sử dụng công thức tính quãng đường đi được của vật có vận tốc \(v\left( t \right)\) từ thời điểm đến \(t\, = \,a\) thời điểm \(t\, = \,b\) là: \(S\, = \,\int\limits_a^b {v\left( t \right)} \,dt\)

Giải chi tiết:

Thời điểm xe dừng hẳn thoả mãn \(v\left( t \right)\, = \,0\, \Leftrightarrow \,20\, - \,5t\, = \,0\, \Leftrightarrow \,t\, = \,4\)

Quãng đường mà mô tô đi được từ khi người lái xe đạp phanh đến lúc mô tô dừng lại là

\(\int\limits_0^4 {\left( {20\, - \,5t} \right)\,dt} \, = \,40\)

Chọn D.

Lời giải

Phương pháp giải: Sử dụng công thức lãi kép \({A_n}\, = \,A{\left( {1\, + \,r} \right)^n}\)

Giải chi tiết:

Giả sử sau n năm dân số nước ta đạt mức 120,5 triệu người ta có:

\(120,5\, = \,91,7\,{\left( {1\, + \,\frac{{1,1}}{{100}}} \right)^n}\, \Leftrightarrow \,n\, \approx \,24,97\)

Vậy phải sau 25 năm, tức là vào năm \(2015\, + \,25\, = \,2040\)

Chọn đáp án D.

Câu 4

A.\(A\, = \,\sqrt {{A_1}^2\, + \,{A_2}^2\, - \,2{A_1}{A_2}\cos \left( {{\varphi _1}\, - \,{\varphi _2}} \right)} \).

B. \(A\, = \,\sqrt {{A_1}^2\, + \,{A_2}^2\, + \,2{A_1}{A_2}\cos \left( {{\varphi _1}\, - \,{\varphi _2}} \right)} \).
C. \(A\, = \,\sqrt {{A_1}^2\, + \,{A_2}^2\, + \,2{A_1}{A_2}\sin \left( {{\varphi _1}\, - \,{\varphi _2}} \right)} \).
D. \(A\, = \,\sqrt {{A_1}^2\, + \,{A_2}^2\, + \,2{A_1}{A_2}\cos \left( {{\varphi _1}\, - \,{\varphi _2}} \right)} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nhật kí trong tù (Hồ Chí Minh)

B. Tắt đèn (Ngô Tất Tố)
C. Chí Phèo (Nam Cao)
D. Những sáng tác của nhóm Tự lực Văn đoàn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP