Câu hỏi:
25/05/2022 720
Cho khối lăng trụ ABC.A'B'C'. Gọi \(E\,,\,F\)lần lượt là trung điểm của \(AA'\,,\,CC'\). Mặt phẳng \(\left( {BEF} \right)\)chia khối lăng trụ thành hai phần. Tỉ số thể tích của hai phần đó là:
Quảng cáo
Trả lời:
Phương pháp giải: Sử dụng phân chia thể tích
Sử dụng công thức tính thể tích hình chóp \(V = \frac{1}{3}h.S\), thể tích lăng trụ \(V = h.S\)
Giải chi tiết:

Ta có: \({V_{ABC.A'B'C'}}\, = \,d\left( {B\,;\,\left( {A'B'C'} \right)} \right).\,{S_{A'B'C'}}\, = \,V\)
\({V_{B.A'B'C'}}\, = \,\frac{1}{3}d\left( {B\,;\,\left( {A'B'C'} \right)} \right).\,{S_{A'B'C'}}\, = \,\frac{1}{3}V\)
Suy ra \({V_{B.AA'C'C}} = \,{V_{ABC.A'B'C'}}\, - \,{V_{B.A'B'C'}}\, - \,V\, - \,\frac{1}{3}V\, = \,\frac{2}{3}V\)
Lại có: \({S_{ACFE}} = \frac{1}{2}{S_{AA'C'C}}\) (do E,F lần lượt là trung điểm của \(AA',CC'\))
Suy ra \({V_{B.AEFC}} = \frac{1}{3}d\left( {B\,,\,\left( {AA'C'C} \right)} \right).\,SACFE\, = \,\frac{1}{3}d\left( {B\,,\,\left( {AA'C'C} \right)} \right).\,\frac{1}{2}{S_{AA'C'C}}\)
\( = \frac{1}{2}\,.\,\frac{1}{3}d\left( {B\,,\,\left( {AA'C'C} \right)} \right).\,{S_{AA'C'C}}\, = \,\frac{1}{2}{V_{B.AA'C'C}}\, = \frac{1}{2}.\frac{2}{3}V\, = \,\frac{1}{3}V\)
Suy ra \({V_{BEFA'B'C'}} = {V_{ABC.A'B'C'}} = V - \frac{1}{3}V = \frac{2}{3}V\)
Vậy tỉ số thể tích giữa hai phần là: \({V_{B.ACFE}}:{V_{BEFA'B'C'}} = \frac{1}{3}V:\frac{2}{3}V = 1:2\)
Chọn C.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
Sử dụng công thức tính quãng đường đi được của vật có vận tốc \(v\left( t \right)\) từ thời điểm đến \(t\, = \,a\) thời điểm \(t\, = \,b\) là: \(S\, = \,\int\limits_a^b {v\left( t \right)} \,dt\)
Giải chi tiết:
Thời điểm xe dừng hẳn thoả mãn \(v\left( t \right)\, = \,0\, \Leftrightarrow \,20\, - \,5t\, = \,0\, \Leftrightarrow \,t\, = \,4\)
Quãng đường mà mô tô đi được từ khi người lái xe đạp phanh đến lúc mô tô dừng lại là
\(\int\limits_0^4 {\left( {20\, - \,5t} \right)\,dt} \, = \,40\)
Chọn D.
Lời giải
Phương pháp giải: Sử dụng công thức lãi kép \({A_n}\, = \,A{\left( {1\, + \,r} \right)^n}\)
Giải chi tiết:
Giả sử sau n năm dân số nước ta đạt mức 120,5 triệu người ta có:
\(120,5\, = \,91,7\,{\left( {1\, + \,\frac{{1,1}}{{100}}} \right)^n}\, \Leftrightarrow \,n\, \approx \,24,97\)
Vậy phải sau 25 năm, tức là vào năm \(2015\, + \,25\, = \,2040\)
Chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.