Câu hỏi:

12/07/2024 264

Trong không gian với hệ trục tọa độ Oxyz, cho \(A\left( {1\,;\,2\,;\,3} \right),\,B\left( {3\,;\,4\,;\,4} \right)\). Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng \(2x\, + \,y\, + \,mz\, - \,1\, = \,0\)bằng độ dài đoạn thẳng AB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: m = 2

Phương pháp giải:  Công thức tính khoảng cách từ điểm \(M({x_0};{y_0};{z_0})\)đến mặt phẳng \((\alpha ):ax + by + cz + d = 0\)\(d(M;(\alpha )) = \frac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

Giải chi tiết:

Đặt \((\alpha ):2x + y + mz - 1 = 0\)

Ta có: \(d(A;(\alpha )) = \frac{{\left| {2.1 + 2 + 3.m - 1} \right|}}{{\sqrt {{2^2} + {1^2} + {m^2}} }} = \frac{{\left| {3 + 3m} \right|}}{{\sqrt {{m^2} + 5} }}\)

 \(d(A;(\alpha )) = \)\(AB\)\( \Leftrightarrow \frac{{\left| {3 + 3m} \right|}}{{\sqrt {{m^2} + 5} }} = 3\)

|m+1|=m2+5m2+2m+1=m2+5m=2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

Sử dụng công thức tính quãng đường đi được của vật có vận tốc \(v\left( t \right)\) từ thời điểm đến \(t\, = \,a\) thời điểm \(t\, = \,b\) là: \(S\, = \,\int\limits_a^b {v\left( t \right)} \,dt\)

Giải chi tiết:

Thời điểm xe dừng hẳn thoả mãn \(v\left( t \right)\, = \,0\, \Leftrightarrow \,20\, - \,5t\, = \,0\, \Leftrightarrow \,t\, = \,4\)

Quãng đường mà mô tô đi được từ khi người lái xe đạp phanh đến lúc mô tô dừng lại là

\(\int\limits_0^4 {\left( {20\, - \,5t} \right)\,dt} \, = \,40\)

Chọn D.

Lời giải

Phương pháp giải: Sử dụng công thức lãi kép \({A_n}\, = \,A{\left( {1\, + \,r} \right)^n}\)

Giải chi tiết:

Giả sử sau n năm dân số nước ta đạt mức 120,5 triệu người ta có:

\(120,5\, = \,91,7\,{\left( {1\, + \,\frac{{1,1}}{{100}}} \right)^n}\, \Leftrightarrow \,n\, \approx \,24,97\)

Vậy phải sau 25 năm, tức là vào năm \(2015\, + \,25\, = \,2040\)

Chọn đáp án D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP