Câu hỏi:
12/07/2024 182Quảng cáo
Trả lời:
Đáp án:
Phương pháp giải: Hàm đa thức bậc ba\(y = f(x)\)có hai điểm cực trị khi và chỉ khi phương trình \(f'(x) = 0\)có hai nghiệm phân biệt
Giải chi tiết:
TXĐ: \(D = \mathbb{R}\)
Ta có: \(f'(x) = {x^2} - 2mx + 10m - 25\)
Xét phương trình \(f'(x) = 0\)\( \Leftrightarrow {x^2} - 2mx + 10m - 25 = 0\)
Để hàm số ban đầu có 2 điểm cực trị thì phương trình \(f'(x) = 0\)có hai nghiệm phân biệt:
\(\begin{array}{l}\Delta ' = {m^2} - 10m + 25 > 0\\ \Leftrightarrow {(m - 5)^2} > 0\\ \Leftrightarrow m \ne 5\end{array}\)
Vậy
Đã bán 1,4k
Đã bán 902
Đã bán 851
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Cho \(a\,,\,b\)là các số nguyên và . Tính \(P\, = \,{a^2}\, + \,{b^2}\, - \,a\, - \,b\).
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận