Câu hỏi:
23/05/2022 250Cho hàm số \(y\, = \,f\left( x \right)\) liên tục và có đạo hàm trên \(\mathbb{R}\). Hàm số \(y\, = \,f'\left( x \right)\) có bảng xét dấu như bảng bên dưới.
Bất phương trình \(f\left( x \right)\, > \,{e^{\cos x}}\, + \,m\) có nghiệm \(x\, \in \,\left( {0\,;\,\frac{\pi }{2}} \right)\) khi và chỉ khi
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án:
Phương pháp giải: - Cô lập \(m\)đưa bất phương trình về dạng \(g(x) \ge m\)có nghiệm \(x \in \left( {0;\frac{\pi }{2}} \right)\)
\( \Rightarrow m \le \mathop {\min }\limits_{\left( {0;\frac{\pi }{2}} \right)} g\left( x \right)\)
- Lập luận để chứng minh \(g(x)\)đơn điệu trên \(\left( {0;\frac{\pi }{2}} \right)\)và suy ra \(\mathop {\min }\limits_{\left( {0;\frac{\pi }{2}} \right)} g\left( x \right)\)
Giải chi tiết:
Ta có:
\(f(x) > {e^{\cos x}} + m\)có nghiệm \(x \in \left( {0;\frac{\pi }{2}} \right)\)
\( \Leftrightarrow f(x) - {e^{\cos x}} \ge m\)có nghiệm \(x \in \left( {0;\frac{\pi }{2}} \right)\)
Đặt \(g(x) = f(x) - {e^{\cos x}}\) \( \Rightarrow g(x) \ge m\)có nghiệm \(x \in \left( {0;\frac{\pi }{2}} \right)\)
\( \Rightarrow m \le \mathop {\min }\limits_{\left( {0;\frac{\pi }{2}} \right)} g\left( x \right)\)
Xét hàm số \(g(x) = f(x) - {e^{\cos x}}\)với \(x \in \left( {0;\frac{\pi }{2}} \right)\)ta có: \(g'(x) = f'(x) + \sin x.{e^{\cos x}}\)
Với \(x \in \left( {0;\frac{\pi }{2}} \right)\)ta có \(\sin x \in (0;1)\) \( \Rightarrow \sin x.{e^{\cos x}} > 0\forall x \in \left( {0;\frac{\pi }{2}} \right)\)
Dựa vào BBT ta thấy \(f'(x) > 0\forall x \in \left( {0;\frac{\pi }{2}} \right)\)
Do đó \(g'(x) > 0\forall x \in \left( {0;\frac{\pi }{2}} \right)\),do đó hàm số đồng biến trên \(\left[ {0;\frac{\pi }{2}} \right]\)
\(\mathop { \Rightarrow \min g(x)}\limits_{\left[ {0;\frac{\pi }{2}} \right]} \) \( = g(0) = f(0) - e\)
\( \Rightarrow \mathop {\min g(x)}\limits_{\left( {0;\frac{\pi }{2}} \right)} \) \( > \mathop {\min g(x) = f(0) - e}\limits_{\left[ {0;\frac{\pi }{2}} \right]} \)
Vậy
Đã bán 902
Đã bán 851
Đã bán 1,4k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Cho \(a\,,\,b\)là các số nguyên và . Tính \(P\, = \,{a^2}\, + \,{b^2}\, - \,a\, - \,b\).
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận