Câu hỏi:

23/05/2022 275 Lưu

Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh bên bằng \(a\) và diện tích đáy bằng \({a^2}\) (tham khảo hình bên dưới). Khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng:

Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh bên bằng (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: d(A;(SBC))=a66

Phương pháp giải: - Đổi \(d(A;(SBC))\)sang \(d(O;(SBC))\)với \(O = AC \cap BD\)

- Gọi \(M\)là trung điểm của \(BC\),trong \((SOM)\)kẻ \(OH \bot SM\)chứng minh \(OH \bot (SBC)\)

- Sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách

Giải chi tiết:

Ta có: \(AO \cap (SBC) = C \Rightarrow \frac{{d(A;(SBC))}}{{d(O;(SBC))}} = \frac{{AO}}{{OC}} = 2\)

\( \Rightarrow d(A;(SBC)) = 2d(O;(SBC))\)

Gọi \(M\)là trung điểm của \(BC\),trong \((SOM)\)kẻ \(OH \bot SM\)ta có:

\(\left\{ {\begin{array}{*{20}{c}}{BC \bot OM}\\{BC \bot SO}\end{array}} \right. \Rightarrow BC \bot (SOM) \Rightarrow BC \bot OH\)

\(\left\{ {\begin{array}{*{20}{c}}{OH \bot BC}\\{OH \bot SM}\end{array}} \right. \Rightarrow OH \bot (SBC) \Rightarrow d(O;(SBC)) = OH\)

\({S_{ABCD}} = {a^2} \Rightarrow BC = a,OM = \frac{1}{2}AB = \frac{1}{2}BC = \frac{a}{2}\)

Ta có: SM=SB2-BM2 =a2-a24 =a32

SO=SM2-OM2 =3a24-a24=a22

Xét tam giác vuông \(SOM\): \(OH = \frac{{SO.OM}}{{\sqrt {S{O^2} + O{M^2}} }} = \frac{{\frac{{a\sqrt 2 }}{2}.\frac{a}{2}}}{{\sqrt {\frac{{{a^2}}}{2} + \frac{{{a^2}}}{4}} }} = \frac{{a\sqrt 6 }}{6}\)

Vậy d(A;(SBC))=a66

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

Sử dụng công thức tính quãng đường đi được của vật có vận tốc \(v\left( t \right)\) từ thời điểm đến \(t\, = \,a\) thời điểm \(t\, = \,b\) là: \(S\, = \,\int\limits_a^b {v\left( t \right)} \,dt\)

Giải chi tiết:

Thời điểm xe dừng hẳn thoả mãn \(v\left( t \right)\, = \,0\, \Leftrightarrow \,20\, - \,5t\, = \,0\, \Leftrightarrow \,t\, = \,4\)

Quãng đường mà mô tô đi được từ khi người lái xe đạp phanh đến lúc mô tô dừng lại là

\(\int\limits_0^4 {\left( {20\, - \,5t} \right)\,dt} \, = \,40\)

Chọn D.

Lời giải

Phương pháp giải: Sử dụng công thức lãi kép \({A_n}\, = \,A{\left( {1\, + \,r} \right)^n}\)

Giải chi tiết:

Giả sử sau n năm dân số nước ta đạt mức 120,5 triệu người ta có:

\(120,5\, = \,91,7\,{\left( {1\, + \,\frac{{1,1}}{{100}}} \right)^n}\, \Leftrightarrow \,n\, \approx \,24,97\)

Vậy phải sau 25 năm, tức là vào năm \(2015\, + \,25\, = \,2040\)

Chọn đáp án D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP