Câu hỏi:
23/05/2022 532
Một thừa đất hình chữ nhật có chiều dài bằng 20 mét và chiều rộng bằng 10 mét, người ta giảm chiều dài \(x\) mét (với \(0\, < \,x\, < \,20\)) và tăng chiều rộng thêm 2x mét để được thửa đất mới. Tìm \(x\) để thửa đất mới có diện tích lớn nhất?
Một thừa đất hình chữ nhật có chiều dài bằng 20 mét và chiều rộng bằng 10 mét, người ta giảm chiều dài \(x\) mét (với \(0\, < \,x\, < \,20\)) và tăng chiều rộng thêm 2x mét để được thửa đất mới. Tìm \(x\) để thửa đất mới có diện tích lớn nhất?
Quảng cáo
Trả lời:
Đáp án:
Phương pháp giải: - Tính chiều dài, chiều rộng mới của thửa đất sau đó tính diện tích mới của thửa đất
- Sử dụng phương pháp hàm số tìm GTLN
Giải chi tiết:
Chiều dài mới của thửa đất là \(20 - x\)(mét)
Chiều rộng của thửa đất là \(10 + 2x\) (mét)
Khi đó diện tích mới của thửa đất là \(S = (20 - x)(10 + 2x)\)
Ta có:
\(S' = 0 \Leftrightarrow x = \frac{{15}}{2}\)
Ta có BBT như sau:
Vậy
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
Sử dụng công thức tính quãng đường đi được của vật có vận tốc \(v\left( t \right)\) từ thời điểm đến \(t\, = \,a\) thời điểm \(t\, = \,b\) là: \(S\, = \,\int\limits_a^b {v\left( t \right)} \,dt\)
Giải chi tiết:
Thời điểm xe dừng hẳn thoả mãn \(v\left( t \right)\, = \,0\, \Leftrightarrow \,20\, - \,5t\, = \,0\, \Leftrightarrow \,t\, = \,4\)
Quãng đường mà mô tô đi được từ khi người lái xe đạp phanh đến lúc mô tô dừng lại là
\(\int\limits_0^4 {\left( {20\, - \,5t} \right)\,dt} \, = \,40\)
Chọn D.
Lời giải
Phương pháp giải: Sử dụng công thức lãi kép \({A_n}\, = \,A{\left( {1\, + \,r} \right)^n}\)
Giải chi tiết:
Giả sử sau n năm dân số nước ta đạt mức 120,5 triệu người ta có:
\(120,5\, = \,91,7\,{\left( {1\, + \,\frac{{1,1}}{{100}}} \right)^n}\, \Leftrightarrow \,n\, \approx \,24,97\)
Vậy phải sau 25 năm, tức là vào năm \(2015\, + \,25\, = \,2040\)
Chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.